RESUMEN
Pores and old root-channels are preferentially used by roots to allow them to penetrate hard soils. However, there are few studies that have accounted for the effects of pore-rhizosheath on root growth. In this study, we developed an approach by adding the synthetic root exudates using a porous stainless tube with 0.1-mm micropores through a peristaltic pump to reproduce the rhizosheath around the artificial pore, and investigated the effects of pores with and without rhizosheaths on maize root growth in a dense soil. The results indicated that the artificial rhizosheath was about 2.69 mm wide in the region surrounding the pores. The rhizosheath had a higher content of organic carbon, total nitrogen, and abundance of Actinobacteria than that of the bulk soil. Compared with the artificial macropores, the artificial root-pores with a rhizosheath increased the opportunities for root utilisation of the pores space, promoting steeper and deeper root growth. It is concluded that the pore-rhizosheath has a significant impact on root architecture by enhancing root distribution in macropores.
Asunto(s)
Raíces de Plantas , Zea mays , Zea mays/crecimiento & desarrollo , Zea mays/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/anatomía & histología , Porosidad , Suelo/química , Nitrógeno/metabolismo , Carbono/metabolismoRESUMEN
The three provinces of Northeast China are crucial to national commodity grain production. Soils in those areas have begun to severely degrade after long-term high-intensity use, with wind erosion as one of the main reasons. Based on meteorological and soil data from 1981 to 2019, we evaluated the spatial-temporal characteristics of wind erosion on bare land in the three provinces of Northeast China by using the revised wind erosion equation (RWEQ), and analyzed the contributions of meteorological factors to wind erosion on bare land. The results showed that, the meteorological factors of wind erosion were overall high in southwestern part and low in northeastern part of the region. In general, wind erosion in the region was substantial, especially in Liaoning. During the 39 years, wind erosion significantly increased throughout the whole year and during the growing season, at a rate of 129 and 105 t·km-2 per decade, respectively. The obvious increase in wind erosion was observed in the northwest Liaoning, Liaohe Plain, and Changbai Mountain area. Wind speed and air temperature were the main factors affecting wind erosion during the year and non-growing season, which contributed less during the growing season when precipitation contributed the most. We concluded that climate change has aggravated soil wind erosion in the three provinces of Northeast China.
Asunto(s)
Cambio Climático , Viento , Suelo , China , TemperaturaRESUMEN
In the past decade, biochar has been widely regarded as a new type of soil conditioner that can effectively control soil acidification and alleviate Al toxicity. Hydrochar is identified as a more economical carbon material than pyrochar, but its effect on Al toxicity and the associated mechanism have not been studied. Thus, a two-stage indoor incubation experiment was conducted to investigate the effect of rice-straw hydrochar (HC, application rate: 1/2/3 %) on maize seedling root growth, soil solution Al activity, soil exchangeable Al and pH buffering ability in acidic red soils from two sites. We also used pyrochar (PC, application rate: 3 %) produced from the same rice straw for comparison. Except for HC-1 %, both hydrochar and pyrochar addition significantly stimulated relative root elongation (136.36 % ~ 284.09 %), diminished the cell death ratio (27.96 % ~ 85.56 %) and Al content in root tips (18.80 % ~ 80.11 %) by decreasing the total Al content (44.78 % ~ 76.10 %) and the proportion of Al3+ species (27 % ~ 32 %) in soil solution. Hydrochar did not significantly promote the soil pH buffer capacity (pH-BC) or effective cation exchange capacity (ECEC), while PC-3 % did. The DOC (dissolved organic carbon) content of soil solution was dramatically elevated by 203.9 % ~ 783.2 % after hydrochar addition. Hydrochar mitigates Al activity in soil solution mainly through Al-DOC complexation and adsorption, thus suppressing the Al toxicity of maize roots. Hydrochar may be an economical soil amendment for ameliorating Al toxicity despite its overall alleviation effect on Al toxicity being lower than pyrochar.
Asunto(s)
Oryza , Contaminantes del Suelo , Suelo/química , Oryza/metabolismo , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Carbono/metabolismo , Zea mays/metabolismoRESUMEN
Plant roots release various organic materials that may modify soil structure and affect heat and mass transfer processes. The objective of this study was to determine the effects of a synthetic root exudate (SRE) on penetrometer resistance (PR), thermal conductivity (λ), hydraulic conductivity (k) and evaporation of water in a sandy soil. Soil samples, mixed with either distilled water or the SRE, were packed into columns at a designated bulk density and water content, and incubated for 7 days at 18°C. Soil PR, λ, k and evaporation rate were monitored during drying processes. Compared with those incubated with water, samples incubated with SRE had visible hyphae, greater PR (0.7-5.5 MPa in the water content range of 0.11 to 0.22 m3 m-3) and λ (0.2-0.7 W m-1 K-1 from 0.05 to 0.22 m3 m-3), and increased k in the wet region but decreased k in the dry region. SRE treatment also reduced the overall soil water evaporation rate and cumulative water loss. Analysis of X-ray computed tomography (CT) scanning showed that the SRE-treated samples had a greater proportion of small pores (<60 µm). These changes were attributed mainly to SRE-stimulated microbial activities. HIGHLIGHTS: The effects of incubating a sandy soil with a synthetic root exudate (SRE) on soil physical properties and evaporation are examined.SRE incubation increased the fraction of small pores.SRE incubation increased soil penetrometer resistance and thermal conductivity.Soil hydraulic conductivity was increased in the wet region but was reduced in the dry region.SRE incubation reduced the overall evaporation rate and cumulative water loss.
RESUMEN
The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.
RESUMEN
Afforestation is a prevalent practice carried out for soil recovery and carbon sequestration. Improved understanding of the effects of afforestation on soil organic carbon (SOC) content and dynamics is necessary to identify the particular processes of soil organic matter (SOM) formation and/or decomposition that result from afforestation. To elucidate these mechanisms, we have used a sequential density fractionation technique to identify the transfer mechanisms of forest derived C to soil fractions and investigate the impact of afforestation on SOC sequestration. Surface soil samples from continuous maize crop land (C4) and forest land (C3), which had been established 5, 12 and 25 yr, respectively, on the Northeast China Plain were separated into five density fractions. SOC, nitrogen (N) concentration and δ13C data from the three forests and adjacent cropland were compared. Afforestation decreased SOC concentration in the < 2.5 g cm-3 fractions from 5 yr forest sites, but increased SOC content in the < 2.0 g cm-3 fractions from 25 yr forest sites. Afforestation did not affect soil mass distribution, SOC and N proportional weight distributions across the density fractions. The < 1.8 g cm-3 fractions from 12 and 25 yr forests showed higher C/N and lower δ13C as compared to other fractions. Incorporation of forest litter-derived C occurred from low density (< 1.8 g cm-3) fractions to aggregates of higher density (1.8-2.5 g cm-3) through aggregate recombination and C transport in the pore system of the aggregates. Some forest litter-derived C could transfer from the light fractions or directly diffuse and adsorb onto mineral particles. Results from this study indicate that microaggregate protection and association between organic material and minerals provide major contribution to the SOC sequestration in the afforested soil system.
Asunto(s)
Carbono/química , Suelo/química , Secuestro de Carbono , Fraccionamiento Químico/métodos , China , Bosques , Minerales/química , Nitrógeno/química , Árboles/químicaRESUMEN
Accurate estimation of soil water retention curve (SWRC) at the dry region is required to describe the relation between soil water content and matric suction from saturation to oven dryness. In this study, the extrapolative capability of two models for predicting the complete SWRC from limited ranges of soil water retention data was evaluated. When the model parameters were obtained from SWRC data in the 0-1500 kPa range, the FX model (Fredlund and Xing, 1994) estimations agreed well with measurements from saturation to oven dryness with RMSEs less than 0.01. The GG model (Groenevelt and Grant, 2004) produced larger errors at the dry region, with significantly larger RMSEs and MEs than the FX model. Further evaluations indicated that when SWRC measurements in the 0-100 kPa suction range was applied for model establishment, the FX model was capable of producing acceptable SWRCs across the entire water content range. For a higher accuracy, the FX model requires soil water retention data at least in the 0- to 300-kPa range to extend the SWRC to oven dryness. Comparing with the Khlosi et al. (2006) model, which requires measurements in the 0-500 kPa range to reproduce the complete SWRCs, the FX model has the advantage of requiring less SWRC measurements. Thus the FX modeling approach has the potential to eliminate the processes for measuring soil water retention in the dry range.
Asunto(s)
Modelos Teóricos , Suelo/química , Agua/química , SequíasRESUMEN
This paper monitored the oat growth and cation absorption characteristics on a saline-alkali soil in the Baicheng region of Jilin Province under low, medium, and high levels of salt stress. No significant differences were observed in the shoot growth and yield components under the three levels of salt stress, but the root biomass and root/shoot ratio decreased significantly with increasing salt stress level. At maturing stage, the root/shoot ratio under medium and high salt stresses was 77.2% and 64.5% of that under low salt stress, respectively. Under the three levels of salt stress, the K+/Na+ and Ca2+/Na+ ratios in oat plant had significant differences at trefoil stage, but no significant differences at heading stage. With the increase of salt stress level, the cation absorption selectivity coefficient of oat at filling stage decreased significantly, but the transportation selectivity coefficient had no significant difference under the three levels of stress. It was concluded that oat could adapt to the salt and alkali stress of soda-alkaline soil to some extent, and the adaptation capability decreased with the increasing level of stress. The decrease of oat root biomass and the stronger ion selective absorption capacity at heading stage under salt and alkali stress could benefit the shoot growth and yield components of oat.