Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 633(8030): 575-581, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39232169

RESUMEN

Futuristic technologies such as morphing aircrafts and super-strong artificial muscles depend on metal alloys being as strong as ultrahigh-strength steel yet as flexible as a polymer1-3. However, achieving such 'strong yet flexible' alloys has proven challenging4-9 because of the inevitable trade-off between strength and flexibility5,8,10. Here we report a Ti-50.8 at.% Ni strain glass alloy showing a combination of ultrahigh yield strength of σy ≈ 1.8 GPa and polymer-like ultralow elastic modulus of E ≈ 10.5 GPa, together with super-large rubber-like elastic strain of approximately 8%. As a result, it possesses a high flexibility figure of merit of σy/E ≈ 0.17 compared with existing structural materials. In addition, it can maintain such properties over a wide temperature range of -80 °C to +80 °C and demonstrates excellent fatigue resistance at high strain. The alloy was fabricated by a simple three-step thermomechanical treatment that is scalable to industrial lines, which leads not only to ultrahigh strength because of deformation strengthening, but also to ultralow modulus by the formation of a unique 'dual-seed strain glass' microstructure, composed of a strain glass matrix embedded with a small number of aligned R and B19' martensite 'seeds'. In situ X-ray diffractometry shows that the polymer-like deformation behaviour of the alloy originates from a nucleation-free reversible transition between strain glass and R and B19' martensite during loading and unloading. This exotic alloy with the potential for mass producibility may open a new horizon for many futuristic technologies, such as morphing aerospace vehicles, superman-type artificial muscles and artificial organs.

2.
Phys Rev Lett ; 130(11): 116102, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-37001083

RESUMEN

Ceramics, often exhibiting important functional properties like piezoelectricity, superconductivity, and magnetism, are usually mechanically brittle at room temperature and even more brittle at low temperature due to their ionic or covalent bonding nature. The brittleness in their working temperature range (mostly from room down to cryogenic temperatures) has been a limiting factor for the usefulness of these ceramics. In this Letter, we report a surprising "low-temperature toughening" phenomenon in a La-doped CaTiO_{3} perovskite ceramic, where a 2.5× increase of fracture toughness K_{IC} from 1.9 to 4.8 MPa m^{1/2} occurs when cooling from above room temperature (323 K) down to a cryogenic temperature of 123 K, the lowest temperature our experiment can reach. In situ microscopic observations in combination with macroscopic characterizations show that this desired but counterintuitive phenomenon stems from a reentrant strain-glass transition, during which nanosized orthorhombic ferroelastic domains gradually emerge from the existing tetragonal ferroelastic matrix. The temperature stability of this unique microstructure and its stress-induced transition into the macroscopic orthorhombic phase provide a low-temperature toughening mechanism over a wide temperature range and explain the observed phenomenon. Our finding may open a way to design tough ceramics with a wide temperature range and shed light on the nature of reentrant transitions in other ferroic systems.

3.
Nat Mater ; 21(9): 1003-1007, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35788570

RESUMEN

Fast development of space technologies poses a strong challenge for elastic materials, which need to be not only lightweight, strong and compliant, but also able to maintain stable elasticity over a wide temperature range1-4. Here we report a lightweight magnesium-scandium strain glass alloy (Mg with 21.3 at.% Sc) that meets this challenge. This alloy is as light (density ~2 g cm-3) and compliant as organic-based materials5-7 like bones and glass fibre reinforced plastics, but in contrast with those materials, it possesses a nearly temperature-independent (or Elinvar-type), ultralow Young's modulus (~20-23 GPa) over a wide temperature range from room temperature down to 123 K; a higher yield strength of ~200-270 MPa; and a long fatigue life of over one million cycles. As a result, it exhibits a relatively high, temperature-independent elastic energy density of ~0.5 kJ kg-1 among known materials at a moderate stress level of 200 MPa. We show that its exceptional properties stem from a strain glass transition, and the Elinvar-type elasticity originates from its moderate elastic softening effect cancelling out the ever-present elastic hardening. Our findings provide insight into designing materials that possess unconventional and technologically important elastic properties.


Asunto(s)
Aleaciones , Módulo de Elasticidad , Elasticidad , Ensayo de Materiales , Temperatura
4.
Insects ; 12(9)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34564224

RESUMEN

In insects, trehalose accumulation is associated with the insulin/insulin-like growth factor signalling (IIS) pathway. However, whether insulin-like peptide is involved in the regulation of the trehalose metabolism during diapause termination remains largely unknown. This study assessed whether insulin-like peptide (ApILP) enhances the trehalose catabolism in the pupae of Antheraeapernyi during their diapause termination process. Injection of 10 µg of bovine insulin triggered diapause termination and synchronous adult eclosion in diapausing pupae. Moreover, treatment with bovine insulin increased the expression of trehalase 1A (ApTre-1A) and trehalase 2 (ApTre-2), as well as the activity of soluble and membrane-bound trehalase, resulting in a decline in trehalose levels in the haemolymph. Silencing ApILP via RNA interference significantly suppressed the expression of ApTre-1A and ApTre-2, thus leading to an increase in the trehalose concentration during diapause termination. However, neither injection with bovine insulin nor ApILP knockdown directly affected trehalase 1B (ApTre-1B) expression. Moreover, overexpression of the transcription factor forkhead box O (ApFoxO) induced an increase in trehalose levels during diapause termination; however, depletion of ApFoxO accelerated the breakdown of trehalose in diapausing pupae by increasing the expression of ApTre-1A and ApTre-2. The results of this study help to understand the contributions of ApILP and ApFoxO to the trehalose metabolism during diapause termination.

5.
ACS Appl Mater Interfaces ; 13(28): 33272-33281, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34242016

RESUMEN

Advanced ferroelectrics with a combination of large dielectric response and good temperature stability are crucial for many technologically important electronic devices and electrical storage/power equipment. However, the two key factors usually do not go hand in hand, and achieving high permittivity is normally at the expense of sacrificing temperature stability. This trade-off relation is eased but not fundamentally remedied using relaxor-type materials which are known to have a diffuse permittivity peak at their relaxor transition temperatures. Here, we report an anomalous trirelaxor phenomenon in a barium titanate system and show that it can lead to a giant dielectric permittivity (εr ≈ 18 000) over a wide temperature range (Tspan ≈ 34K), which successfully overcomes a long-standing permittivity-stability trade-off. Moreover, the enhancement in the dielectric properties also yields a desired temperature-insensitive electrocaloric performance for the trirelaxor ferroelectrics. Microstructure characterization and phase-field simulations reveal a mixture of tetragonal, orthorhombic, and rhombohedral polar nanoregions over a broad temperature window in trirelaxor ferroelectrics, which is responsible for this combination of giant dielectric permittivity and good temperature stability. This finding provides an effective approach in designing advanced ferroelectrics with high performance and thermal stability.

7.
J Pathol Inform ; 12: 52, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35070481

RESUMEN

Multiparametric fluorescence imaging through CODEX allows the simultaneous imaging of many biomarkers in a single tissue section. While the digital fluorescence data thus obtained can provide highly specific characterizations of individual cells and microenvironments, the images obtained are different from those usually interpreted by pathologists (i.e., hematoxylin and eosin [H&E] slides and 3,3'-diaminobenzidine-stained immunohistochemistry slides). Having the fluorescence data plus coregistered H&E or similar data could facilitate the adoption of multiparametric imaging into regular workflows, as well as facilitate the transfer of algorithms and machine learning previously developed around H&E slides. Since commercial CODEX instruments do not produce H&E-like images by themselves, we developed a staining protocol and associated image processing to make "virtual H&E" images that can be incorporated into the CODEX workflow. While there are many ways to achieve virtual H&E images, including the use of a fluorescent nuclear stain and tissue autofluorescence to simulate eosin staining, we opted to combine fluorescent nuclear staining (through 4',6-diamidino-2-phenylindole) with actual eosin staining. We also output images derived from fluorescent nuclear staining and autofluorescence images for additional evaluation.

8.
Phys Rev Lett ; 125(12): 127602, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-33016738

RESUMEN

Here, we report a new phenomenon of uniform and continuous transformation of a single polarization domain into alternating nanodomains of two polarization vectors with the same magnitude but different directions at ferroelectric morphotropic phase Boundary (MPB). The transformation is fully reversible and could enhance the piezoelectric coefficient d_{33}. Further free energy calculations illustrate that such a polarization "decomposition" process occurs within the region on the Landau free energy curve with respect to the polarization direction where the second derivative becomes negative, which is similar to spinodal instability in phase transformations such as spinodal ordering or isostructural phase separation (e.g., spinodal decomposition). This "polarization spinodal" uncovers a new mechanism of polarization switching that may account for the ultrahigh ahysterestic piezoelectric strain at the MPB. This work could shed light on the development of phase transition theory and the design of novel ferroelectric memory materials.

9.
J Int Med Res ; 48(6): 300060520926006, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32567428

RESUMEN

OBJECTIVE: To investigate adipocytokine expression levels, platelet-to-lymphocyte ratio (PLR) and transforming growth factor (TGF)-ß1/Smad signaling activity in diabetic patients with pulmonary infection. METHODS: Eighty-two type 2 diabetic patients with pulmonary infection were included in the observation group and 75 patients with simple type 2 diabetes were recruited into the control group. The fasting blood glucose (FBG), glycated hemoglobin (HbA1c), and PLR in the two groups were compared. Complement-C1q/tumor necrosis factor related protein 3 (CTRP-3), complement-C1q/tumor necrosis factor related protein 9 (CTRP-9), leptin, adiponectin, and TGF-ß1/Smad signaling pathway activity in peripheral blood mononuclear cells (PBMCs) was detected. RESULTS: Compared with patients in the control group, patients in the observation group presented with increased levels of FGB, HbA1c, and leptin, an increase in the PLR, and decreased serum CTRP-3, CTRP-9, and adiponectin levels. TGF-ß1, p-Smad2, and p-Smad3 protein expression levels were up-regulated in PBMCs from patients in the observation group compared with the control group. CONCLUSIONS: These results show that in type 2 diabetic patients with pulmonary infection, adipocytokine expression is altered, PLR is disturbed, and the TGF-ß1/Smad signaling pathways in PBMCs are significantly activated.


Asunto(s)
Adipoquinas/análisis , Diabetes Mellitus Tipo 2/metabolismo , Neumonía/inmunología , Adipoquinas/metabolismo , Adiponectina/análisis , Anciano , Plaquetas/metabolismo , China , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Glucosa/metabolismo , Humanos , Infecciones/inmunología , Infecciones/fisiopatología , Leucocitos Mononucleares/metabolismo , Linfocitos/metabolismo , Masculino , Persona de Mediana Edad , Transducción de Señal , Proteína Smad2/análisis , Proteína smad3/análisis , Factor de Crecimiento Transformador beta1/análisis , Factor de Crecimiento Transformador beta1/metabolismo , Factores de Necrosis Tumoral/análisis
10.
Parasit Vectors ; 13(1): 273, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32487266

RESUMEN

BACKGROUND: Fishermen and boatmen are a population at-risk for contracting schistosomiasis due to their high frequency of water contact in endemic areas of schistosomiasis in the People's Republic of China (P. R. China). To develop specific interventions towards this population, the present study was designed to assess the knowledge, attitudes and practices (KAPs) towards schistosomiasis of fishermen and boatmen, and to identify the risk factors associated with schistosome infection using a molecular technique in a selected area of Hunan Province in P. R. China. METHODS: A cross sectional survey was conducted in the Dongting Lake Basin of Yueyang County, Hunan Province. A total of 601 fishermen and boatmen were interviewed between October and November 2017. Information regarding sociodemographic details and KAPs towards schistosomiasis were collected using a standardized questionnaire. Fecal samples of participants were collected and tested by polymerase chain reaction (PCR). Logistic regression analysis was conducted to explore the risk factors related to the positive results of PCR. RESULTS: Of the 601 respondents, over 90% knew schistosomiasis and how the disease was contracted, the intermediate host of schistosomes and preventive methods. The majority of respondents had a positive attitude towards schistosomiasis prevention. However, only 6.66% (40/601) of respondents had installed a latrine on their boats, while 32.61% (196/601) of respondents defecated in the public toilets on shore. In addition, only 4.99% (30/601) respondents protected themselves while exposed to freshwater. The prevalence of schistosomiasis, as determined by PCR, among fishermen and boatmen in Yueyang County was 13.81% (83/601). Age, years of performing the current job, number of times receiving treatment, and whether they were treated in past three years were the main influencing factors of PCR results among this population. CONCLUSIONS: Fishermen and boatmen are still at high risk of infection in P. R. China and gaps exist in KAPs towards schistosomiasis in this population group. Chemotherapy, and health education encouraging behavior change in combination with other integrated approaches to decrease the transmission risk in environments should be improved.


Asunto(s)
Explotaciones Pesqueras , Conocimientos, Actitudes y Práctica en Salud , Esquistosomiasis/epidemiología , Adulto , Animales , China/epidemiología , Estudios Transversales , Heces/parasitología , Femenino , Educación en Salud , Humanos , Lagos , Masculino , Persona de Mediana Edad , Ocupaciones/estadística & datos numéricos , Prevalencia , Factores de Riesgo , Esquistosomiasis/diagnóstico , Esquistosomiasis/parasitología , Navíos , Encuestas y Cuestionarios
11.
ACS Appl Mater Interfaces ; 12(27): 30289-30296, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32530604

RESUMEN

Although extensive studies have been done on lead-free dielectric ceramics to achieve excellent dielectric behaviors and good energy storage performance, the major problem of low energy density has not been solved so far. Here, we report on designing the crossover relaxor ferroelectrics (CRFE), a crossover region between the normal ferroelectrics and relaxor ferroelectrics, as a solution to overcome the low energy density. CRFE exhibits smaller free energy and lower defect density in the modified Landau theory, which helps to obtain ultrahigh energy density and efficiency. The (1-x)Ba0.65Sr0.35TiO3-xBi(Mg2/3Nb1/3)O3 ((1-x)BST-xBMN) (x = 0, 0.08, 0.1, 0.18, 0.2) ceramic was synthesized by a solid-state reaction method. The solid solutions exhibit dielectric frequency dispersion, which suggests typical relaxor characteristics with the increasing BMN content. The crossover ferroelectrics of 0.9BST-0.1BMN ceramic possesses a high energy storage efficiency (η) of 85.71%, a high energy storage density (W) of 3.90 J/cm3, and an ultrahigh recoverable energy storage density (Wrec) of 3.34 J/cm3 under a dielectric breakdown strength of 400 kV/cm and is superior to other lead-free BaTiO3 (BT)-based energy storage ceramics. It also exhibits strong thermal stability in the temperature range from 25 to 150 °C under an electric field of 300 kV/cm, with the fluctuations below 3% and with the energy storage density and energy efficiency at about 2.8 J/cm3 and 82.93%, respectively. The enhanced recoverable energy density and breakdown strength of BT-based materials with significantly high energy efficiency make it a promising candidate to meet the wide requirements for high power applications.

12.
J Phys Condens Matter ; 32(32): 325402, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32162615

RESUMEN

The transition sequence in the Heusler alloy Ni50Mn34In8Ga8 has been determined from measurements of elasticity, heat flow and magnetism to be paramagnetic austenite → paramagnetic martensite → ferromagnetic martensite at ∼335 and ∼260 K, respectively, during cooling. The overall pattern of elastic stiffening/softening and acoustic loss is typical of a system with bilinear coupling between symmetry breaking strain and the driving structural/electronic order parameter, and a temperature interval below the transition point in which ferroelastic twin walls remain mobile under the influence of external stress. Divergence between zero-field-cooling and field-cooling determinations of DC magnetisation below ∼220 K indicates that a frustrated magnetic glass develops in the ferromagnetic martensite. An AC magnetic anomaly which shows Vogel-Fulcher dynamics in the vicinity of ∼160 K is evidence of a further glassy freezing process. This coincides with an acoustic loss peak and slight elastic stiffening that is typical of the outcome of freezing of ferroelastic twin walls. The results suggest that local strain variations associated with the ferroelastic twin walls couple with local moments to induce glassy magnetic behaviour.

13.
Phys Rev Lett ; 123(13): 137601, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31697531

RESUMEN

In ferroelectric and relaxor-ferroelectric materials, piezoelectric and dielectric properties are significantly enhanced at the morphotropic phase boundary (MPB), a boundary between different ferroelectric phases with different macroscopic symmetries. By contrast, in relaxor systems, such an MPB does not exist because relaxors of different compositions possess the same macroscopic symmetry. Here, we report the existence of a morphotropic relaxor boundary (MRB) in the single phase relaxor region of a K_{0.5}Na_{0.5}NbO_{3}-xBaTiO_{3} system, which is a composition-induced boundary between two relaxors with different local polar symmetries (tetragonal versus rhombohedral) but with the same macroscopic cubic symmetry. At the MRB the electrostrain increases by ∼3 times and the permittivity increases by ∼1.5 times over a wide temperature range of more than 100 K, as compared with off-MRB compositions. Our Letter demonstrates that the MRB may become an effective mechanism to enhance the dielectric and electrostrictive properties of relaxors.

14.
Materials (Basel) ; 12(11)2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31151148

RESUMEN

The magneto-elastic coupling effect correlates to the changes of moment and lattice upon magnetic phase transition. Here, we report that, in the pseudo-binary Laves-phase Tb1-xDyxCo2 system (x = 0.0, 0.7, and 1.0), thermal expansion and magnetostriction can probe the ferrimagnetic transitions from cubic to rhombohedral phase (in TbCo2), from cubic to tetragonal phase (in DyCo2), and from cubic to rhombohedral then to tetragonal phase (in Tb0.3Dy0.7Co2). Furthermore, a Landau polynomial approach is employed to qualitatively investigate the thermal expansion upon the paramagnetic (cubic) to ferrimagnetic (rhombohedral or tetragonal) transition, and the calculated thermal expansion curves agree with the experimental curves. Our work illustrates the correlation between crystal symmetry, magnetostriction, and thermal expansion in ferrimagnetic Laves-phase alloys and provides a new perspective to investigate ferrimagnetic transitions.

15.
J Phys Condens Matter ; 30(34): 345402, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30015630

RESUMEN

The alloy Ti50(Pd40Cr10) undergoes a strain glass transition around room temperature evidenced by frequency dispersion of dynamic mechanical properties and lack of average structure change from that of the high symmetry austenite phase. However, since the strain glass transition is not a thermodynamic phase transition but a dynamic freezing process governed by the kinetics, a quantitative characterization of the slowing down of dynamics during the strain glass transition is still lacking. In the present study, the probability distribution function (PDF) of the relaxation time of the strain glass alloy is investigated spanning the whole transition temperature range (253 K-313 K). The slowing down of dynamics of the strain glass is indicated by the rapid increase of the characteristic relaxation time ([Formula: see text]) upon cooling. The [Formula: see text], as a function of temperature, shows a transition from Vogel-Fulcher relationship to an Arrhenius relationship. Such a change suggests two fundamentally different states: unfrozen strain glass state and frozen strain glass state. Furthermore, the spread of the PDF is connected to the fraction of quasi-static nanodomains, which helps the understanding of the dynamic freezing process in the strain glass.

16.
Nat Commun ; 9(1): 506, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29410411

RESUMEN

Martensitic transformations originate from a rigidity instability, which causes a crystal to change its lattice in a displacive manner. Here, we report that the martensitic transformation on cooling in Ti-Zr-Cu-Fe alloys yields an amorphous phase instead. Metastable ß-Ti partially transforms into an intragranular amorphous phase due to local lattice shear and distortion. The lenticular amorphous plates, which very much resemble α'/α″ martensite in conventional Ti alloys, have a well-defined orientation relationship with the surrounding ß-Ti crystal. The present solid-state amorphization process is reversible, largely cooling rate independent and constitutes a rare case of congruent inverse melting. The observed combination of elastic softening and local lattice shear, thus, is the unifying mechanism underlying both martensitic transformations and catastrophic (inverse) melting. Not only do we reveal an alternative mechanism for solid-state amorphization but also establish an explicit experimental link between martensitic transformations and catastrophic melting.

17.
Sci Rep ; 7(1): 6596, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747764

RESUMEN

High-carbon martensite steels (with C > 0.5 wt.%) are very hard but at the same time as brittle as glass in as-quenched or low-temperature-tempered state. Such extreme brittleness, originating from a twin microstructure, has rendered these steels almost useless in martensite state. Therefore, for more than a century it has been a common knowledge that high-carbon martensitic steels are intrinsically brittle and thus are not expected to find any application in harsh loading conditions. Here we report that these brittle steels can be transformed into super-strong ones exhibiting a combination of ultrahigh strength and significant toughness, through a simple grain-refinement treatment, which refines the grain size to ~4 µm. As a result, an ultra-high tensile strength of 2.4~2.6 GPa, a significant elongation of 4~10% and a good fracture toughness (K1C) of 23.5~29.6 MPa m1/2 were obtained in high-carbon martensitic steels with 0.61-0.65 wt.% C. These properties are comparable with those of "the king of super-high-strength steels"-maraging steels, but achieved at merely 1/30~1/50 of the price. The drastic enhancement in mechanical properties is found to arise from a transition from the conventional twin microstructure to a dislocation one by grain refinement. Our finding may provide a new route to manufacturing super-strong steels in a simple and economic way.

19.
Nat Commun ; 8: 13937, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28098145

RESUMEN

All ferromagnetic materials show deterioration of magnetism-related properties such as magnetization and magnetostriction with increasing temperature, as the result of gradual loss of magnetic order with approaching Curie temperature TC. However, technologically, it is highly desired to find a magnetic material that can resist such magnetism deterioration and maintain stable magnetism up to its TC, but this seems against the conventional wisdom about ferromagnetism. Here we show that a Fe-Ga alloy exhibits highly thermal-stable magnetization up to the vicinity of its TC, 880 K. Also, the magnetostriction shows nearly no deterioration over a very wide temperature range. Such unusual behaviour stems from dual-magnetic-phase nature of this alloy, in which a gradual structural-magnetic transformation occurs between two magnetic phases so that the magnetism deterioration is compensated by the growth of the ferromagnetic phase with larger magnetization. Our finding may help to develop highly thermal-stable ferromagnetic and magnetostrictive materials.

20.
Sci Rep ; 7: 40916, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28098249

RESUMEN

Although dielectric energy-storing devices are frequently used in high voltage level, the fast growing on the portable and wearable electronics have been increasing the demand on the energy-storing devices at finite electric field strength. This paper proposes an approach on enhancing energy density under low electric field through compositionally inducing tricriticality in Ba(Ti,Sn)O3 ferroelectric material system with enlarged dielectric response. The optimal dielectric permittivity at tricritical point can reach to εr = 5.4 × 104, and the associated energy density goes to around 30 mJ/cm3 at the electric field of 10 kV/cm, which exceeds most of the selected ferroelectric materials at the same field strength. The microstructure nature for such a tricritical behavior shows polarization inhomogeneity in nanometeric scale, which indicates a large polarizability under external electric field. Further phenomenological Landau modeling suggests that large dielectric permittivity and energy density can be ascribed to the vanishing of energy barrier for polarization altering caused by tricriticality. Our results may shed light on developing energy-storing dielectrics with large permittivity and energy density at low electric field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...