Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 192(2): 1204-1220, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36974897

RESUMEN

Mikania micrantha Kunth is a fast-growing global invasive weed species that causes severe damage to natural ecosystems and very large economic losses of forest and crop production. Although Puccinia spegazzinii can effectively inhibit the growth of M. micrantha and is used as a biological control strain in many countries, the mechanism of inhibiting the growth of M. micrantha is not clear. Here, we used a combination of phenotypic, enzyme activity, transcriptomic, and metabolomic approaches to study the response of M. micrantha after infection by P. spegazzinii. In the early stages of rust infection, jasmonic acid (JA), jasmonoyl-isoleucine (JA-Ile), and salicylic acid (SA) levels in infected leaves were significantly lower than those in uninfected leaves. In teliospore initial and developed stages of P. spegazzinii, JA and JA-Ile levels substantially increased by more than 6 times, which resulted in a significant decrease in the accumulation of defense hormone SA in infected leaves of M. micrantha. The contents of plant growth-promoting hormones were significantly reduced in the infected plants as a result of substantial downregulation of the expression of key genes related to hormone biosynthesis. Furthermore, rust infection led to high levels of reactive oxygen species in chloroplasts and the destruction of chlorophyll structure, which also led to decreased photosynthetic gene expression, net photosynthetic rate, activity of Rubisco, and levels of important organic acids in the Calvin cycle. We hypothesized that after P. spegazzinii infection, JA or JA-Ile accumulation not only inhibited SA levels to promote rust infection and development, but also impeded the rapid growth of M. micrantha by affecting plant growth hormones, carbon, and nitrogen metabolic pathways.


Asunto(s)
Basidiomycota , Mikania , Mikania/genética , Ecosistema , Hormonas
2.
Microorganisms ; 11(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985252

RESUMEN

Mikania micrantha is one of the worst invasive species globally and can cause significant negative impacts on agricultural and forestry economics, particularly in Asia and the Pacific region. The rust Puccinia spegazzinii has been used successfully as a biological control agent in several countries to help manage M. micrantha. However, the response mechanisms of M. micrantha to P. spegazzinii infection have never been studied. To investigate the response of M. micrantha to infection by P. spegazzinii, an integrated analysis of metabolomics and transcriptomics was performed. The levels of 74 metabolites, including organic acids, amino acids, and secondary metabolites in M. micrantha infected with P. spegazzinii, were significantly different compared to those in plants that were not infected. After P. spegazzinii infection, the expression of the TCA cycle gene was significantly induced to participate in energy biosynthesis and produce more ATP. The content of most amino acids, such as L-isoleucine, L-tryptophan and L-citrulline, increased. In addition, phytoalexins, such as maackiain, nobiletin, vasicin, arachidonic acid, and JA-Ile, accumulated in M. micrantha. A total of 4978 differentially expressed genes were identified in M. micrantha infected by P. spegazzinii. Many key genes of M. micrantha in the PTI (pattern-triggered immunity) and ETI (effector-triggered immunity) pathways showed significantly higher expression under P. spegazzinii infection. Through these reactions, M. micrantha is able to resist the infection of P. spegazzinii and maintain its growth. These results are helpful for us to understand the changes in metabolites and gene expression in M. micrantha after being infected by P. spegazzinii. Our results can provide a theoretical basis for weakening the defense response of M. micrantha to P. spegazzinii, and for P. spegazzinii as a long-term biological control agent of M. micrantha.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...