Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36815560

RESUMEN

During a survey of thermotolerant fungi in China, three isolates were obtained from soil samples. Phylogenetic analysis of a combined internal transcribed spacer and large subunit dataset showed that these isolates belong to the same species, which form a well-separated lineage distinct from the other genera in Latoruaceae. Morphologically, the isolates are characterized by having globose and smooth conidiogenous cells, verruculose mycelium and cymbiform conidia. Combining the phylogenetic analyses and morphological characteristics, Multiverruca gen. nov. is proposed and introduced to accommodate a single new species, Multiverruca sinensis sp. nov. Detailed descriptions, illustrations and notes are provided for the new genus and species.


Asunto(s)
Ascomicetos , Suelo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Composición de Base , Ácidos Grasos/química
2.
Antonie Van Leeuwenhoek ; 115(11): 1319-1333, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36018401

RESUMEN

The Arthrodermataceae, or dermatophytes, are a major family in the Onygenales and important from a public health safety perspective. Here, based on sequenced and downloaded from GenBank sequences, the evolutionary relationships of Arthrodermataceae were comprehensively studied via phylogenetic reconstruction, divergence time estimation, phylogenetic split network, and phylogeography analysis. These results showed the clades Ctenomyces, Epidermophyton, Guarromyces, Lophophyton, Microsporum, Paraphyton, and Trichophyton were all monophyletic groups, whereas Arthroderma and Nannizzia were polyphyletic. Among them, Arthroderma includes at least four different clades, Arthroderma I, III and IV are new clades in Arthrodermataceae. Nannizzia contains at least two different clades, Nannizzia I and Nannizzia II, but Nannizzia II was a new clade in Arthrodermataceae. The unclassified group, distributed in Japan and India, was incorrectly identified; it should be a new clade in Arthrodermataceae. The phylogenetic split network based on the ITS sequences provided strong support for the true relationships among the lineages in the reconstructed phylogenetic tree. A haplotype phylogenetic network based on the ITS sequences was used to visualize species evolution and geographic lineages relationships in all genera except Trichophyton. The new framework provided here for the phylogeny and taxonomy of Arthrodermataceae will facilitate the rapid identification of species in the family, which should useful for evaluating the results of preventive measures and interventions, as well as for conducting epidemiological studies.


Asunto(s)
Arthrodermataceae , Arthrodermataceae/genética , Filogenia , Filogeografía , Epidermophyton , Microsporum , Trichophyton
3.
MycoKeys ; 91: 85-96, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36760887

RESUMEN

Using chicken feathers as bait, Acremoniumglobosisporum sp. nov. and Acremoniumcurvum sp. nov. were collected from the soil of Yuncheng East Garden Wildlife Zoo and Zhengzhou Zoo in China. They were identified by combining the morphological characteristics and the two-locus DNA sequence (LSU and ITS) analyses. In the phylogenetic tree, both new species clustered into separate subclades, respectively. They were different from their allied species in their morphology. The description, illustrations, and phylogenetic tree of the two new species were provided.

4.
Ying Yong Sheng Tai Xue Bao ; 30(12): 4231-4239, 2019 Dec.
Artículo en Chino | MEDLINE | ID: mdl-31840469

RESUMEN

Ants as ecosystem engineers can increase the input of soil organic matter, change soil physicochemical properties, and stimulate microbial activities through their colonization, thus affecting the spatiotemporal dynamics of soil organic carbon mineralization. We explored the spatiotemporal characteristics of carbon mineralization rates in ant nests and the adjacent soils in Syzygium oblatum community of Xishuangbanna, Yunnan. We analyzed the association of the variation in carbon mineralization rates with soil physicochemical properties. We found that ant colonization had a significant effect on soil organic carbon mineralization. The mean carbon mineralization rate was 19.2% higher in nest soils than that in the surrounding soils. The monthly carbon mineralization rate in nest soils and the reference soils was ranked as June > September > March > December. The highest increase of carbon mineralization rate in ant nests was observed in 10-15 cm soil layer, while that in the reference soils was in 0-5 cm soil depth. Ant colonization had a significant effect on soil physicochemical properties. Compared with reference soils, soil temperature, soil water, soil organic carbon,soil microbial carbon, total nitrogen, hydrolytic nitrogen, nitrate, and ammonium increased by 7.6%, 5.4%, 9.9%, 14.8%, 13.4%, 9.9%, 24.1%, 6.6% and 19.4%, respectively. In contrast, soil bulk density and soil pH were decreased by 1.4% and 2.5%, respectively. Results from correlation coefficients and principal component analysis (PCA) showed that soil organic carbon and soil microbial carbon were the key factors controlling the mineralization of soil organic carbon, followed by total nitrogen, hydrolyzed nitrogen, ammonium, nitrate, temperature, and soil moisture. We conclude that ant colonization mainly alter the substrate components (i.e., soil organic carbon and microbial biomass carbon) of soil organic carbon mineralization and thus affect its spatio-temporal dynamics in Xishuangbanna tropical forests.


Asunto(s)
Hormigas , Suelo , Animales , Carbono , China , Ecosistema , Bosques , Nitrógeno , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...