Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Anim Sci Biotechnol ; 15(1): 40, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38448979

RESUMEN

BACKGROUND: Fatty liver disease causes huge economic losses in the poultry industry due to its high occurrence and lethality rate. Three-dimensional (3D) chromatin architecture takes part in disease processing by regulating transcriptional reprogramming. The study is carried out to investigate the alterations of hepatic 3D genome and H3K27ac profiling in early fatty liver (FLS) and reveal their effect on hepatic transcriptional reprogramming in laying hens. RESULTS: Results show that FLS model is constructed with obvious phenotypes including hepatic visible lipid deposition as well as higher total triglyceride and cholesterol in serum. A/B compartment switching, topologically associating domain (TAD) and chromatin loop changes are identified by high-throughput/resolution chromosome conformation capture (HiC) technology. Targeted genes of these alternations in hepatic 3D genome organization significantly enrich pathways related to lipid metabolism and hepatic damage. H3K27ac differential peaks and differential expression genes (DEGs) identified through RNA-seq analysis are also enriched in these pathways. Notably, certain DEGs are found to correspond with changes in 3D chromatin structure and H3K27ac binding in their promoters. DNA motif analysis reveals that candidate transcription factors are implicated in regulating transcriptional reprogramming. Furthermore, disturbed folate metabolism is observed, as evidenced by lower folate levels and altered enzyme expression. CONCLUSION: Our findings establish a link between transcriptional reprogramming changes and 3D chromatin structure variations during early FLS formation, which provides candidate transcription factors and folate as targets for FLS prevention or treatment.

2.
Poult Sci ; 103(2): 103316, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128454

RESUMEN

The interesting roles and efficiencies of fecal microbiota transplantation (FMT) have attracted considerable attention and have been gradually evidenced in specific animal models. While the growing evidence that bacteriophages play roles in FMT efficacy has attracted considerable interest. In this study, we aimed to explore the effects of FMT and fecal virome transplantation (FVT) in improving inflammatory damage and ileal microbiota disorder in broilers. A total of 224 Arbor Acres broilers were selected at 1-day-old and randomly divided into the following 4 groups, with 56 broilers in each group: the CON group (the negative control group, sterile physiological saline injection + sterile phosphate-buffered saline (PBS) solution gavage), LPS group (the positive control group, lipopolysaccharide (LPS) injection + sterile PBS solution gavage), LPS + FMT group (LPS injection + FMT solution gavage), LPS + FVT group (LPS injection + FVT solution gavage). The results showed that: LPS injection significantly upregulated the mRNA expression levels of IFN-γ (P < 0.05) and IL-8 (P < 0.001) in ileal mucosa of broilers at 11th day of age (D11), while LPS + FMT and LPS + FVT did not; LPS injection significantly upregulated the mRNA expression of ZO-1 in ileal mucosa at D11 (P < 0.01), while LPS + FMT and LPS + FVT did not; at D11, compare to CON group, LPS injection and LPS + FMT significantly increased the relative abundance of virulence factor Rab2 interacting conserved protein A-related genes in broiler ileum contents (P < 0.05), while LPS + FVT had no significant difference with CON group (P > 0.05); at D11, LPS injection significantly downregulated the biosynthesis of antibiotics pathway (P < 0.05) in the ileal contents, while LPS + FVT did not. In conclusion, both FMT and FVT could promote the recovery of inflammation caused by LPS. Furthermore, FVT had shown less disadvantage stimulation on the broilers and could reduce the risk of transmission of pathogenic genes, compared to FMT.


Asunto(s)
Trasplante de Microbiota Fecal , Enfermedades Intestinales , Animales , Trasplante de Microbiota Fecal/veterinaria , Trasplante de Microbiota Fecal/métodos , Lipopolisacáridos/toxicidad , Pollos , Viroma , Enfermedades Intestinales/veterinaria , ARN Mensajero
3.
Poult Sci ; 102(10): 102951, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562124

RESUMEN

This study investigated the appropriate way of dietary Acer truncatum leaves (ATL) addition, the effect of disease prevention and its mechanism of action. In experiment 1, 192 Arbor Acres broilers were assigned to 4 treatment groups, fed with basal diets containing 2% bran, replacing it with primary and fermented ATL, and additional 0.3% ATL extract to the basal diet for 42 d, respectively. In experiment 2, 144 broilers were assigned to 3 treatment groups for 21-d trial: (1) C-N group, basal diets, and injected with 0.9% (w/v) sterile saline; (2) C-L group, basal diets, and injected with lipopolysaccharide (LPS); (3) T-L group, ATL diets and injected with LPS. In experiment 1, ATL significantly decreased the index of abdominal fat at 42 d (P < 0.05). ATL extract had a better ability to improve antioxidant capacity and reduce inflammatory levels among all treatment groups, which significantly decreased the content of MDA in the liver and ileum mucosa at 21 d, and increased the expression of IL-10 and Occludin in jejunal mucosa at 42 d (P < 0.05). In experiment 2, ATL significantly increased the level of T-AOC in the liver, decreased the expression of NF-κB in the jejunal mucosa and ileum mucosa (P < 0.05), and restored LPS-induced the changed level of CAT in jejunal mucosa, the expression of IL-6, Claudin-1, and ZO-1 in jejunal mucosa and IL-1ß in ileum mucosa (P < 0.05). Analysis of gut microbiota indicated that ATL enhanced the abundances of Bacteroidota and reduced the proportion of Firmicutes (P < 0.05), and the changed levels of T-AOC in body, IL-1ß, IL-6, IL-10, and NF-κB in jejunum mucosa and propionic acid in cecal were associated with gut microbiota. Collectively, our data showed that the extract of ATL had a better antioxidant and anti-inflammatory effects than primality and fermented. Extraction of ATL modulated intestinal microbiota, and had a protective effect on oxidative stress, inflammation, and intestinal barrier function in broilers challenged with LPS.


Asunto(s)
Acer , Microbioma Gastrointestinal , Animales , Acer/metabolismo , Alimentación Animal/análisis , Antioxidantes/metabolismo , Pollos/metabolismo , Dieta , Suplementos Dietéticos/análisis , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/veterinaria , Interleucina-10 , Interleucina-6/metabolismo , Lipopolisacáridos/toxicidad , FN-kappa B/metabolismo
4.
mSphere ; 8(3): e0061422, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37017520

RESUMEN

The chicken gut microbiota plays an influential role in nutrient absorption and metabolism. A clear picture of microbiota succession can enhance host nutrition and disease resistance. This study investigated the cecal microbiota succession of broilers between 3 and 42 days after hatching using 16S rRNA gene sequencing and analyzed its potential association with intestinal nutrient metabolism. Microbiota structure differed significantly at different time points depending on the microbiota alpha-diversity or beta-diversity. Proteobacteria and Bacteroidetes promoted succession on days 3 to 7 and days 28 to 35, respectively. Firmicutes and Tenericutes maintained homeostasis on days 7 to 28 and days 35 to 42. Shigella, [Ruminococcus], Erysipelotrichaceae_Clostridium, and Coprobacillus promoted succession on days 3 to 7; Faecalibacterium modified microbial composition on days 7 to 14; Faecalibacterium and Bacteroides regulated microbial structure from days 21 to 28. The microbiota structure was relatively stable on days 14 to 21 and days 28 to 35. Spearman's correlation analysis indicated a positive correlation between Lactobacillus and villus height and crypt depth (P < 0.01). Faecalibacterium and Shigella were correlated with propionate, butyrate, and valerate concentrations (P < 0.01). Ruminococcus was correlated with sodium-glucose cotransporters 1 and cationic amino acid transporter 1 expression (P < 0.05). Erysipelotrichaceae_Clostridium and Shigella were positively correlated with serum levels of total cholesterol, tryglucerides, and high- and low-density lipoprotein cholesterol (P < 0.01). Bacteroides, Parabacteroides, Lactobacillus, and Shigella were correlated with serum VB6 levels (P < 0.01). Bacteroides, Erysipelotrichaceae_Clostridium, and Coprobacillus were correlated with the moisture content of cecal contents (P < 0.05). The identification of the microbiota in correlation with nutrient metabolism will promote microbial nutrition through microbiota intervention or nutritional regulation. IMPORTANCE The poultry industry has become a global leader in livestock farming over the past few decades. Poultry production has a large consumer market as an integrated industry producing high-protein foods. Establishing the association between microbiota and nutrient metabolism processes provides fresh insights for precise nutrient regulation. This study aimed to describe the development of cecal microbiota in broiler chickens throughout the production cycle and to assess the correlation of nutrient metabolism phenotypes with temporal changes in the microbiota. The results suggested that changes in cecal microbes with age partly explain changes in gut nutrient metabolic processes, and numerous microbes were significantly associated with the processes. Therefore, this study attempts to further find efficient ways of improving poultry production. One is to promote nutrient metabolism by identifying potential candidates for probiotics, and another is to foster the dominant colonization of the microbiota by regulating nutrient metabolism.


Asunto(s)
Ciego , Pollos , Animales , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Ciego/microbiología , Nutrientes , Colesterol
5.
Poult Sci ; 102(4): 102557, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36863121

RESUMEN

Coccidia vaccination is a common practice in the poultry industry. However, research is lacking regarding the optimal nutritional support for coccidia vaccinated broilers. In this study, broilers were vaccinated with coccidia oocyst at hatch and were fed with a common starter diet from 1 to 10 d. On d 11, the broilers were randomly assigned to groups in a 4 × 2 factorial arrangement. Briefly, the broilers were fed one of four diets containing 0.6, 0.8, 0.9, and 1.0% of standardized ileal digestible methionine plus cysteine (SID M+C), respectively, from 11 to 21 d. On d 14, the broilers from each diet group were orally gavaged with either PBS (Mock challenge) or Eimeria oocysts. Compared to PBS-gavaged broilers and regardless of dietary SID M+C levels, the Eimeria-gavaged broilers had 1) decreased gain-to-feed ratio (15-21 d, P = 0.002; 11-21 d, P = 0.011); 2) increased fecal oocysts (P < 0.001); 3) increased plasma anti-Eimeria IgY (P = 0.033); and 4) increased intestinal luminal interleukin-10 (IL-10; duodenum, P = 0.039; jejunum, P = 0.018) and gamma interferon (IFN-γ; duodenum, P < 0.001; jejunum, P = 0.017). Regardless of Eimeria gavage, broilers fed 0.6% SID M+C had decreased (P<0.001) body weight gain (15-21 and 11-21 d) and gain-to-feed ratio (11-14, 15-21, and 11-21 d) when compared to those fed ≥ 0.8% SID M+C. Eimeria challenge increased (P < 0.001) duodenum lesions when the broilers were fed with 0.6, 0.8, and 1.0% SID M+C, and increased (P = 0.014) mid-intestine lesions when the broilers were fed with 0.6 and 1.0% SID M+C. An interaction between the two experimental factors was detected on plasma anti-Eimeria IgY titers (P = 0.022), as coccidiosis challenge increased plasma anti-Eimeria IgY titers only when the broilers were fed with 0.9% SID M+C. In summary, the dietary SID M+C requirement for grower (11-21 d) broilers vaccinated with coccidiosis was ranged from 0.8 to 1.0% for optimal growth performance and intestinal immunity, regardless of coccidiosis challenge.


Asunto(s)
Coccidiosis , Eimeria , Enfermedades de las Aves de Corral , Animales , Aminoácidos/farmacología , Pollos , Suplementos Dietéticos , Dieta/veterinaria , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Intestinos , Metionina/farmacología , Cisteína/farmacología , Racemetionina/farmacología , Alimentación Animal/análisis
6.
J Anim Sci Biotechnol ; 14(1): 17, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36894995

RESUMEN

BACKGROUND: Body phosphorus metabolism exhibits a circadian rhythm over the 24-h daily cycle. The egg laying behavior makes laying hens a very special model for investigating phosphorus circadian rhythms. There is lack of information about the impact of adjusting phosphate feeding regimen according to daily rhythm on the phosphorus homeostasis and bone remodeling of laying hens. METHODS AND RESULTS: Two experiments were conducted. In Exp. 1, Hy-Line Brown laying hens (n = 45) were sampled according the oviposition cycle (at 0, 6, 12, and 18 h post-oviposition, and at the next oviposition, respectively; n = 9 at each time point). Diurnal rhythms of body calcium/phosphorus ingestions and excretions, serum calcium/phosphorus levels, oviduct uterus calcium transporter expressions, and medullary bone (MB) remodeling were illustrated. In Exp. 2, two diets with different phosphorus levels (0.32% and 0.14% non-phytate phosphorus (NPP), respectively) were alternately presented to the laying hens. Briefly, four phosphorus feeding regimens in total (each included 6 replicates of 5 hens): (1) fed 0.32% NPP at both 09:00 and 17:00; (2) fed 0.32% NPP at 09:00 and 0.14% NPP at 17:00; (3) fed 0.14% NPP at 09:00 and 0.32% NPP at 17:00; (4) fed 0.14% NPP at both 09:00 and 17:00. As a result, the regimen fed 0.14% NPP at 09:00 and 0.32% NPP at 17:00, which was designed to strengthen intrinsic phosphate circadian rhythms according to the findings in Exp. 1, enhanced (P < 0.05) MB remodeling (indicated by histological images, serum markers and bone mineralization gene expressions), elevated (P < 0.05) oviduct uterus calcium transportation (indicated by transient receptor potential vanilloid 6 protein expression), and subsequently increased (P < 0.05) eggshell thickness, eggshell strength, egg specific gravity and eggshell index in laying hens. CONCLUSIONS: These results underscore the importance of manipulating the sequence of daily phosphorus ingestion, instead of simply controlling dietary phosphate concentrations, in modifying the bone remodeling process. Body phosphorus rhythms will need to be maintained during the daily eggshell calcification cycle.

7.
Poult Sci ; 102(4): 102516, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764138

RESUMEN

The liver undergoes a slow process for lipid deposition during chick embryonic period. However, the underlying physiological and molecular mechanisms are still unclear. Therefore, the aim of the current study was to reveal the epigenetic mechanism of hepatic transcriptional reprogramming changes based on the integration analysis of RNA-seq and H3K27ac labeled CUT&Tag. Results showed that lipid contents increased gradually with the embryonic age (E) 11, E15, and E19 based on morphological analysis of Hematoxylin-eosin and Oil Red O staining as well as total triglyceride and cholesterol detection. The hepatic protein level of SREBP-1c was higher in E19 when compared with that in E11 and E15, while H3K27ac and H3K4me2 levels declined from E11 to E19. Differential expression genes (DEGs) among these 3 embryonic ages were determined by transcriptome analysis. A total of 107 and 46 genes were gradually upregulated and downregulated respectively with the embryonic age. Meanwhile, differential H3K27ac occupancy in chromatin was investigated. But the integration analysis of RNA-seq and CUT&Tag data showed that the overlap genes were less between DEGs and target genes of differential peaks in the promoter regions. Further, some KEGG pathways enriched from target genes of typical enhancer were overlapped with those from DEGs in transcriptome analysis such as insulin, FoxO, MAPK signaling pathways which were related to lipid metabolism. DNA motif analysis identify 8 and 10 transcription factors (TFs) based on up and down differential peaks individually among E11, E15, and E19 stages where 7 TFs were overlapped including COUP-TFII, FOXM1, FOXA1, HNF4A, RXR, ERRA, FOXA2. These results indicated that H3K27ac histone modification is involved in the transcriptional reprogramming regulation during embryonic development, which could recruit TFs binding to mediate differential enhancer activation. Differential activated enhancer impels dynamic transcriptional reprogramming towards lipid metabolism to promote the occurrence of special phenotype of hepatic lipid deposition.


Asunto(s)
Pollos , Histonas , Animales , Histonas/genética , Pollos/genética , Pollos/metabolismo , Desarrollo Embrionario , Hígado/metabolismo , Lípidos
8.
Anim Nutr ; 11: 132-141, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36204283

RESUMEN

Phosphorus metabolism in laying hens is a highly dynamic process over the course of the 24 h egg-laying cycle. Adjusting the phosphorus feeding regimen according to the daily egg-laying cycle may help to improve phosphorus utilization efficiency. Hy-Line Brown layers (n = 120; 70 wk old) were offered 4 different phosphorus daily regimens: (1) RR, fed regular phosphorus at both 09:00 and 17:00; (2) RL, fed regular phosphorus at 09:00 and low phosphorus at 17:00; (3) LR, fed low phosphorus at 09:00 and regular phosphorus at 17:00; (4) LL, fed low phosphorus at both 09:00 and 17:00. The regular and low phosphorus diets contained 0.32% and 0.14% non-phytate phosphorus, respectively. The feeding trial lasted for 12 wk. As a result, layers on the RL regimen had decreased laying rate (P < 0.05; 5 to 8, 9 to 12, and 1 to 12 wk) when compared to all other regimens. Layers on the LL regimen had decreased eggshell thickness and specific gravity (P < 0.05; wk 8) when compared to all other regimens, and had decreased egg shell strength (P < 0.05; wk 8) when compared to RL and LR regimens. When compared to the RR regimen (a common practice in the industry), layers on the LR regimen had: (1) identical laying performance and egg quality (P > 0.05); (2) decreased phosphorus excretion (P < 0.05) during the period of 09:00 to 17:00; (3) increased jejunal calbindin D28k protein expression (P < 0.05) 2 h after feeding in the morning; (4) decreased serum fibroblast growth factor 23 and calcitriol levels (P < 0.05), decreased jejunal type III sodium-phosphate cotransporter 2 gene and protein expression (P < 0.05), and decreased renal type III sodium-phosphate cotransporter 1 protein expression (P < 0.05), 2 h after feeding in the afternoon. In summary, when dietary phosphorus was supplemented in accordance with daily serum phosphorus rhythms (i.e., the LR regimen), laying performance and egg quality were well supported whilst significantly decreasing phosphorus consumption and excretion. Thus, serum phosphorus rhythms will need to be carefully maintained when developing dietary phosphorus-reduction strategies in laying hens.

9.
Anim Nutr ; 10: 382-389, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35949200

RESUMEN

Oral antibody to interleukin-10 (anti-IL-10) enhances the intestinal immune defense against Eimeria. The sulfur amino acids methionine and cysteine (M+C) play essential roles in inducing and maintaining protective immune responses during intestinal infections. Hence, increased dietary M+C may support the anti-IL-10-induced intestinal immunity to Eimeria. Broilers (n = 640) were arranged in a 2 × 2 × 2 factorial design with 2 levels of each of the 3 main factors: dietary standardized ileal digestible (SID) M+C levels (0.6% or 0.8%), dietary anti-IL-10 supplementation (with or without), and coccidiosis challenge (control or challenge). Briefly, the broilers were supplied with either 0.6% or 0.8% SID M+C, each with or without anti-IL-10 (300 µg/kg), from d 10 to 21. On d 14, broilers from each diet were gavaged with either PBS or Eimeria. The resulting Eimeria infection induced fecal oocyst shedding and intestinal lesions. Broilers fed 0.8% SID M+C (main effects, P ≤ 0.05) had decreased feed-to-gain ratio, increased duodenum and cecum luminal anti-Eimeria IgA titers, and decreased fecal oocyst counts, when compared to 0.6% SID M+C. The supplementation of anti-IL-10 (main effects, P ≤ 0.05) increased cecum luminal total IgA concentration and decreased cecum lesions. Interactions (P ≤ 0.05) were detected for growth performance and cecum luminal IFN-γ. Briefly, the highest body weight gain and feed intake were reached in PBS-gavaged broilers fed 0.8% SID M+C with no anti-IL-10 and in Eimeria-challenged broilers fed 0.8% SID M+C with anti-IL-10. In Eimeria-infected broilers, anti-IL-10 increased intestinal luminal IFN-γ and body weight gain only at 0.8% SID M+C. Collectively, anti-IL-10 increased intestinal luminal IFN-γ levels, decreased cecum lesions and restored growth only when fed with adequate amounts of sulfur amino acids. Our findings underscore the importance of providing sufficient essential nutrients to support the anti-IL-10 induced immunity against coccidiosis.

10.
Anim Nutr ; 9: 23-30, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35949979

RESUMEN

The present study was carried out to evaluate the effect of dietary supplemental vitamin D3 on fibroblast growth factor 23 (FGF23) signals as well as phosphorus homeostasis and metabolism in laying hens. Fourteen 40-week-old Hy-Line Brown layers were randomly assigned into 2 treatments: 1) vitamin D3 restriction group (n = 7) fed 0 IU/kg vitamin D3 diet, and 2) regular vitamin D3 group (n = 7) fed 1,600 IU/kg vitamin D3 diet. The study lasted for 21 d. Serum parameters, phosphorus and calcium excretion status, and tissue expressions of type II sodium-phosphate co-transporters (NPt2), FGF23 signals and vitamin D3 metabolic regulators were determined. Hens fed the vitamin D3 restricted diet had decreased serum phosphorus levels (by 31.3%, P = 0.028) when compared to those fed regular vitamin D3 diet. In response to the decreased serum phosphorus, the vitamin D3 restricted laying hens exhibited: 1) suppressed kidney expressions of 25-hydroxyvitamin D 1-α-hydroxylase (CYP27B1, by 52.8%, P = 0.036) and 1,25-dihydroxyvitamin D 24-hydroxylase (CYP24A1, by 99.4%, P = 0.032); 2) suppressed serum levels of FGF23 (by 14.6%, P = 0.048) and increased serum alkaline phosphatase level (by 414.1%, P = 0.012); 3) decreased calvaria mRNA expressions of fibroblast growth factor receptors (FGFR1, by 85.2%, P = 0.003, FGFR2, by 89.4%, P = 0.014, FGFR3, by 88.8%, P = 0.017, FGFR4, by 89.6%, P = 0.030); 4) decreased kidney mRNA expressions of FGFR1 (by 65.5%, P = 0.021), FGFR4 (by 66.0%, P = 0.050) and KLOTHO (by 68.8%, P = 0.038); 5) decreased kidney protein expression of type 2a sodium-phosphorus co-transporters (by 54.3%, P = 0.039); and 6) increased percent excreta calcium (by 26.9%, P = 0.002). In conclusion, the deprivation of dietary vitamin D3 decreased FGF23 signals in laying hens by reducing serum FGF23 level and suppressing calvaria and kidney mRNA expressions of FGF23 receptors.

11.
Poult Sci ; 101(5): 101815, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35339935

RESUMEN

This study aimed to investigate the effects of in ovo feeding (IOF) and dietary addition (DA) oils on growth, development and immune function of broiler chickens. In experiment 1, a total of 500 eggs were randomly assigned to 3 treatments: non-injected group (CON) with 100 eggs; soybean oil injected group (SO) with 200 eggs and linseed oil injected group (LO) with 200 eggs. Results showed that there were no detrimental effects of IOF of oils on embryonic development. In experiment 2, a two factor experimental design was adopted. After hatching, 120 chicks which came from each oil-injected group were divided into 2 treatments with 6 replicates, and chickens were fed soybean oil diet and linseed oil diet, respectively. The results showed that DA linseed oil increased final body weight (FBW) of broilers at d 21 post hatch, IOF of linseed oil decreased average daily feed intake (ADFI) and feed conversion ratio (FCR) of broilers from d 1 to 21 (P < 0.05), while the plasma leptin level of 21-day-old broilers was increased by IOF or DA linseed oil (P < 0.05). Main effect analysis showed that DA linseed oil increased the spleen index and mRNA expression of IFN-γ in spleen of broilers at 7 d of age (P < 0.05). IOF of linseed oil upregulated the mRNA expression of IFN-γ in the spleen of chicks at 1 d and mRNA expression of IL-2 and IL-4 in spleen of broilers at 21 d (P < 0.05), and the interaction effect showed that IOF and DA linseed oil synergically increased the expression of IL-2 and IL-4 in spleen of broilers at 21 d. Compared with SO group, LO increased the Shannon index of hatching-day cecum microflora (P < 0.05). Principal co-ordinates analysis (PcoA) showed that LO group clearly separated from CON and SO groups. Finally, Spearman correlation analysis also manifested that Alkalicoccus was significantly correlated with spleen index and mRNA expression of IL-2, and Phreatobacter was significantly correlated with the mRNA expression of IL-2 and IFN-γ in spleen, Acinetobacter had a positive correlation with thymus index (P < 0.05). In conclusion, IOF of linseed oil reduced the ADFI and FCR of broilers and increased the species diversity and changed the structure of cecal microflora of chicken embryos at the 19th day of incubation (E19). Immune function of broilers spleen was also regulated by IOF and DA linseed oil.


Asunto(s)
Pollos , Aceite de Linaza , Alimentación Animal/análisis , Animales , Embrión de Pollo , Dieta/veterinaria , Inmunidad , Interleucina-2 , Interleucina-4 , Óvulo , Aceites de Plantas , ARN Mensajero , Aceite de Soja
12.
Anim Nutr ; 7(4): 973-980, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34703915

RESUMEN

In ovo feeding of vitamin C (VC) has positive effects on the growth performance, immune and antioxidant function in poultry, which indicates that increasing VC content in eggs may be of benefit. This study was to investigate the effects of dietary VC supplementation on VC synthesis and transportation and egg deposition. In Exp. 1, in order to select a suitable animal model, VC content was detected in different eggs from different layer species. Vitamin C content was lower in ISA Brown breeder eggs and Hy-Line Brown layer eggs (P < 0.05) then in Arbor Acres breeder eggs. In Exp. 2, a total of 24 Hy-Line Brown layers (42-week-old) were randomly divided into 3 treatments with 8 replicates and fed a basal diet with VC at 0, 200 and 400 mg/kg. Sodium-dependent VC transporter 1 and 2 (SVCT1 and SVCT2) expressions were higher in ileum than in duodenum and jejunum (P < 0.05). SVCT1 expression was higher but SVCT2 expression was lower in the magnum than in the ovary (P < 0.05). L-Gulonolactone oxidase (GLO) and SVCT1 expressions were higher but SVCT2 was lower in the kidney than in the liver (P < 0.05). Dietary VC supplementation at 400 mg/kg increased SVCT1 expression in duodenum, ovary and magnum, but decreased GLO and SVCT1 expression in liver (P < 0.05). Dietary VC supplementation at 200 and 400 mg/kg increased SVCT2 expression in duodenum, but decreased GLO and SVCT1 expression in kidney and SVCT2 expression in liver (P < 0.05). Dietary VC supplementation promoted VC absorption in duodenum and jejunum, but reduced endogenous VC synthesis in liver and kidney. Although dietary VC supplementation enhanced VC transportation in ovary and magnum, it did not increase VC deposition in produced eggs.

13.
Anim Nutr ; 7(3): 841-848, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34466688

RESUMEN

The microbiome in gastrointestinal tracts play an important role in regulating nutrient utilization and absorption, gut immune function, and host growth or development. This study was conducted to investigate the composition and dynamic distribution of caecal microbiota in pullets during the first 16 weeks. Growth performance, immune organs index, and intestinal morphology of pullets were analyzed at 3, 6, 12 and 16 weeks of age. The caecal contents were collected for microbiota analysis by 16S rRNA gene sequencing method. With advancing ages in pullets, the gradually increased average daily feed intake (ADFI), feed conversion ratio (FCR) and intestinal villus height, but the gradually decreased organs index of thymus and bursa were determined. Meanwhile, more abundant caecal bacterial communities were determined from pullets at 12 and 16 weeks of age than those at 3 and 6 weeks of age. Furthermore, the dominant microflora of pullets from different weeks of age were analyzed by using LEfSe: The higher abundance of Blautia, Prevotella, Alistipes, and Eggerthella were found at 6 weeks; Anaerostipes, Oscillospira, Enterococcus and Methanobrevibacter were determined at 12 weeks; and the higher abundance of Parabacteroides, Anaerofustis, Lactobacillus and Butyricimonas were determined at 16 weeks. Further functional predicted analysis by PICRUSt revealed that the endocrine system and carbohydrate metabolism were significantly developed at 3 weeks. The development of the immune system was predicted to be mainly during 6 to 12 weeks, while cardiovascular diseases and circulatory system were during 12 to 16 weeks. In addition, the significantly negative correlation between Bacteroides and villus height, the significantly negative correlation between growth parameters (ADFI and FCR) and Bacteroides, Oscillospira and Alistipes; and the significantly positive relations between growth parameters (ADFI and FCR) and Bilophila, Lactobacillus, Rikenella and Anaerofustis were determined by using Pearson analyses. In conclusion, our data demonstrated that growth performance and intestinal morphology correlate well with caecal microbiota, which could provide new insights to establish or develop nutritional strategies to manage the intestinal health or development of laying pullets.

14.
J Anim Sci Biotechnol ; 12(1): 86, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34340712

RESUMEN

BACKGROUND: Many researches about in ovo feeding (IOF) of vitamin C (VC) are gradually carried out to explore physiological development in chicken, but little studies focus on VC synthesis capacity of the embryo itself, the selection of injection site and the effectiveness of IOF of VC. This study aims to explore the above problems. RESULTS: Kidney and yolk sac were the main organs for VC synthesis and L-gulonolactone oxidase (GLO) expression was lower during pre-hatch development than that during post-hatch development. Sodium-dependent vitamin C transporter 1 (SVCT1) expression was increased continuously in yolk sac from embryonic age 19 (E19) to post-hatch day 1 (D1) and in intestine (duodenum, jejunum and ileum) from E17 to D1. Plasma VC content was higher at D1 than that at D21 and D42. IOF of VC significantly reduced GLO expression in liver, kidney and yolk sac as well as SVCT1 expression in duodenum, jejunum and ileum, but increased the VC content in plasma, brain, kidney and liver. In addition, IOF of VC obviously reduced the embryonic morality and increased the hatchability under heat stress. CONCLUSIONS: This study suggested that IOF of VC at E11 in yolk was effective for embryonic VC supplementation. These findings provide a theoretical reference about the method of embryonic VC supplementation and effective methodology on embryonic VC nutrition in broiler chickens.

15.
Poult Sci ; 100(3): 100807, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33518310

RESUMEN

With global warming and ban on antibiotics, it occurs occasionally that deoxynivalenol (DON) together with Clostridium perfringens impairs the gut health of broiler chickens. However, the interactive effect of DON and C. perfringens on intestinal health is still unknown. A total of 120 one-day-old Arbor Acres broilers were randomly distributed to 4 groups. Birds were gavaged with C. perfringens (8 × 108 CFU/d per bird) or sterile medium and fed a DON diet (0 or 5 mg of DON per kg diet) to investigate the interactive effects. The main effect analysis showed that DON diet significantly downregulated (P < 0.05) the mRNA expression of mucin-2, B-cell lymphoma-2-associated X, and cysteinyl aspartate-specific proteinase-3 of jejunal mucosa; decreased (P < 0.05) the indexes of ACE, Chao1, Shannon, and Simpson; and also decreased the relative abundance of the phylum Bacteroidete and the genera Lactococcus in jejunal contents of broilers chickens. Meanwhile, C. perfringens significantly increased (P < 0.05) crypt depth; decreased (P < 0.05) the ratio of villi height to crypt depth, the activity of jejunal diamine oxidase, and the relative abundance of Lactococcus; and upregulated (P < 0.05) the relative expression of B-cell lymphoma-2 and cysteinyl aspartate-specific proteinase-8. Furthermore, the interactions between DON and C. perfringens were most significant (P < 0.05) in the mRNA expression of lipopolysaccharide-induced TNF factor (LITAF) and TLR-4, the abundance of the genera Lactococcus in jejunal contents, and butyric acid concentrations in cecal contents of birds. Finally, Spearman correlation analysis suggested that the most negative correlations (P < 0.05) with the abundance of the genera except Lactobacillus were observed within the mRNA expression of LITAF. The abundance of Lactococcus had a positive correlation (P < 0.05) with the expression of Caspase-3. Most genera except Lactobacillus negatively correlated (P < 0.05) with acetic acid, butyric acid, and total short-chain fatty acids. In conclusion, dietary deoxynivalenol and C. perfringens challenge had a harmful effect on the jejunal health and should be carefully monitored in broiler production.


Asunto(s)
Pollos , Infecciones por Clostridium , Suplementos Dietéticos , Yeyuno , Enfermedades de las Aves de Corral , Tricotecenos , Animales , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/fisiopatología , Infecciones por Clostridium/veterinaria , Clostridium perfringens , Dieta/veterinaria , Regulación de la Expresión Génica/efectos de los fármacos , Yeyuno/efectos de los fármacos , Yeyuno/microbiología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/microbiología , Distribución Aleatoria , Tricotecenos/farmacología , Tricotecenos/uso terapéutico
16.
Poult Sci ; 99(7): 3525-3531, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32616248

RESUMEN

Body phosphorus homeostasis network allows laying hens to adapt to wide range of changes in dietary phosphorus levels. Phytase hydrolyzes phytate rendering phosphorus and reduces the laying hens' requirements for inorganic phosphate rock. Here, we demonstrate that there is no need to keep large safety margins in dietary phosphorus when hens are fed with phytase. Hy-Line Brown laying hens (n = 504) were randomly assigned to 7 treatments (6 replicates of 12 birds). A corn-soybean meal-based diet, with no inorganic phosphate rock, was formulated to contain 0.12% nonphytate phosphorus (nPP), 3.8% calcium, and 2,000 FTU/kg phytase. Inorganic phosphate rock (di-calcium phosphate) was supplemented into the basal diet to create 6 other diets containing 0.17, 0.22, 0.27, 0.32, 0.37, and 0.42% nPP. Levels of calcium carbonate and zeolite powder were adjusted to make sure all the 7 experimental diets contained the same nutrition levels (including calcium and phytase) except nPP. The diets were subjected to laying hens from 29 to 40 wk of age. As a result, when supplemented with 2,000 FTU/kg phytase, extra supplementation of inorganic phosphate rock had no effects (P > 0.05) on serum phosphorus levels, serum calcium levels, laying performance (laying rate, egg weight, feed intake, feed-to-egg ratio, and unqualified egg rate), egg quality (shell thickness, shell strength, albumen height, yolk color, and Haugh unit), and tibia quality parameters (breaking strength and ash, calcium, and phosphorus contents). Extra supplementation of inorganic phosphate rock linearly increased (P < 0.01) fecal phosphorus excretion and linearly decreased (P = 0.032) the apparent metabolizability of dietary phosphorus. While serum hormones and intestine gene expressions were varied within treatments, no consistent changes were found. In conclusion, the supplementation of inorganic phosphate rock (provided 0.05-0.30% extra nPP) to phytase-containing basal diets (2,000 FTU/kg; nPP = 0.12%) provided limited benefits to egg production performance in laying hens from 29 to 40 wk of age. Further investigating the body phosphorus homeostasis would help to understand the nutritional and physiological reasonability of formulating low-phosphorus diets in the laying hen industry.


Asunto(s)
6-Fitasa/metabolismo , Pollos/fisiología , Fósforo/deficiencia , 6-Fitasa/administración & dosificación , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Femenino , Distribución Aleatoria
17.
Br J Nutr ; 124(9): 903-911, 2020 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-32517823

RESUMEN

This study aimed to evaluate the effect of in ovo feeding (IOF) of vitamin C at embryonic age 11 (E11) on post-hatch performance, immune status and DNA methylation-related gene expression in broiler chickens. A total of 240 Arbor Acres breeder eggs (63 (sem 0·5) g) were randomly divided into two groups: normal saline and vitamin C (VC) groups. After incubation, newly hatched chicks from each group were randomly divided into six replicates with ten chicks per replicate. Hatchability, average daily feed intake (D21-42 and D1-42), and average daily gain and feed conversion ratio (D1-21) were improved by vitamin C treatment (P < 0·05). IOF of vitamin C increased vitamin C content (D1), total antioxidant capacity (D42), IgA (D1), IgM (D1 and D21), stimulation index for T lymphocyte (D35) and lysozyme activity (D21) in plasma (P < 0·05). On D21, vitamin C increased the splenic expression of IL-4 and DNMT1 and decreased IL-1ß, Tet2, Tet3 and Gadd45ß expression (P < 0·05). On D42, vitamin C increased the splenic expression of IL-4 and DNMT3A and decreased IFN-γ, Tet3, MBD4 and TDG expression (P < 0·05). In conclusion, the vitamin C via in ovo injection can be absorbed by broiler's embryo and IOF of vitamin C at E11 improves the post-hatch performance and immune status and, to some extent, the antioxidant capacity of broiler chickens. The expression of enzyme-related DNA methylation and demethylation indicates that the level of DNA methylation may increase in spleen in the VC group and whether the fluctuating expression of pro- and anti-inflammatory cytokines is related to DNA methylation change remained to be further investigated.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/inmunología , Ácido Ascórbico/administración & dosificación , Metilación de ADN/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Óvulo/efectos de los fármacos , Fenómenos Fisiológicos Nutricionales de los Animales/genética , Animales , Antioxidantes/metabolismo , Embrión de Pollo , Pollos , Citocinas/metabolismo , Huevos , Bazo/metabolismo
18.
Poult Sci ; 99(5): 2395-2406, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32359574

RESUMEN

The protection of Lactobacillus plantarum JM113 against deoxynivalenol (DON)-induced apoptosis and intestinal inflammation on the jejunum of broiler chickens and the potential roles of gut microbiota were determined. A total of 144 one-day-old male broilers (Arbor Acres) were randomly divided into 3 treatment groups consisting of 6 replicates with 8 birds per replicate, including the CON (basal diet), the DON (basal diet + 10 mg/kg DON), and the DL (basal diet + 10 mg/kg DON + 1 × 109 CFU/kg L. plantarum JM113). The DON-diet decreased (P < 0.05) the mRNA expression of mucosal defense proteins and mechanistic target of rapamycin pathway genes. Meanwhile, DON challenge significantly increased Bcl-2-associated X gene/B-cell lymphoma 2 gene (Bcl-2) in the jejunum (P < 0.05) and demonstrated proapoptosis status. In contrast, the DL group showed normal immunity-related gene expression of jejunal mucosa and manifested a superior antiapoptosis status. Adding L. plantarum JM113 significantly raised (P < 0.05) propionic acid, n-butyric acid, and total short-chain fatty acids concentrations in cecal contents of birds fed with DON diet. In addition, DON exposure altered bacterial community structure and disturbed the abundance of several bacterial phyla, families, and genera, leading to dysbiosis. Supplementation with JM113 shifted the gut microbiota composition to that of the CON group. Finally, Spearman correlation analysis suggested that most positive correlations with the mRNA expression of immunity-related and apoptosis-regulatory gene were observed within the phylum Bacteroidetes, and most negative correlations with the indicators were observed within the phylum Firmicutes. The mRNA expression of Bcl-2, TLR2, mTOR, Raptor, and RPS6KB1 (P < 0.05), which are regarded as important cell proliferation and antiapoptosis parameters, were significantly negatively associated with the relative abundances of norank_f__Erysipelotrichaceae, Subdoligranulum, and Anaeroplasma, whereas they had a strong positive correlation with Ruminococcaceae_UCG-004, Alistipes, and Ruminococcaceae_NK4A214_group. These results implied that L. plantarum JM113 supplementation could ameliorate DON-induced apoptosis and intestinal inflammation via manipulating the bacterial community composition and could be used as a potential candidate to attenuate intestinal impairments.


Asunto(s)
Pollos/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Inmunidad Mucosa/efectos de los fármacos , Inflamación/veterinaria , Lactobacillus plantarum/química , Sustancias Protectoras/administración & dosificación , Tricotecenos/toxicidad , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Factores Inmunológicos/administración & dosificación , Técnicas In Vitro , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/prevención & control , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/inmunología , Enfermedades Intestinales/prevención & control , Enfermedades Intestinales/veterinaria , Mucosa Intestinal/inmunología , Lipopolisacáridos/efectos adversos , Masculino , Enfermedades de las Aves de Corral/inducido químicamente , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/prevención & control , Bazo/efectos de los fármacos
19.
Int J Biol Macromol ; 159: 832-838, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32387604

RESUMEN

As an immune-regulator, Astragalus polysaccharides (APS) could effectively modulate the activity of toll-like receptor 4 (TLR4) signaling pathway, and induce anti-inflammatory response in intestinal. Our research before indicated that toll/interleukin 1 receptor-domain-containing adapter-inducing interferon-b (TRIF) might be a critical regulator for APS. So, in this experiment, we analyzed the effects of APS on lipopolysaccharide (LPS)-infected Caco2 cells in the circumstances of TRIF knockout. By using qRT-PCR and flow cytometry method, we analyzed the genes expression at transcriptional and translational level, respectively. The results of genes expression at both transcription and translation level showed that LPS could activate the myeloid differentiation factor 88 (MyD88)-TNF receptor associated factor (TRAF) pathway downstream from TLR4, and induce the high expression of pro-inflammatory cytokines. However, APS could effectively suppress the LPS induced inflammatory response. While, in the context of TRIF knockout, APS couldn't effectively attenuate the LPS activated MyD88-TRAF6 pathway, as well as the expression of pro-inflammatory cytokines. Above all, we concluded that APS could antagonize the LPS induced inflammatory response by a TRIF-dependent manner.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Antiinflamatorios/farmacología , Planta del Astrágalo/química , Polisacáridos/farmacología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Antiinflamatorios/química , Biomarcadores , Células CACO-2 , Biología Computacional/métodos , Citocinas/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Factores Inmunológicos , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipopolisacáridos/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Polisacáridos/química
20.
Poult Sci ; 99(1): 374-384, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32416822

RESUMEN

Research has shown that methionine+ cysteine (M+C) requirements may be higher when chickens are infected with Eimeria app. In a 4 × 2 factorial design, broilers (11 to 21 D) were fed one of 4 corn-soybean meal-based diets containing either 0.6, 0.8, 0.9, or 1.0% standardized ileal digestible (SID) M+C; on day 14, broilers from each diet were gavaged with either phosphate-buffered saline (PBS) or a commercial coccidiosis vaccine (at 100 × vaccine dose) which provide a mixture of live Eimeria acervulina, Eimeria maxima, and Eimeria tenella oocysts. Growth performance was recorded from day 11 to 21. Plasma and intestinal luminal samples were collected on days 14 and 21. Intestine lesion scores and fecal oocyst counts were conducted on day 21. Regardless of dietary SID M+C levels, compared to PBS gavaged broilers, the Eimeria-challenged broilers had (1) decreased (P < 0.05) body weight gain (BWG), feed intake (FI), and gain-to-feed ratio (G:F); (2) increased (P < 0.05) intestinal lesion scores and fecal oocyst counts; (3) increased (P < 0.05) plasma anti-Eimeria IgG, and intestinal luminal total IgA and anti-Eimeria IgA concentrations; and (4) increased (P < 0.05) levels of duodenum luminal gamma interferon (IFN-γ) and interleukin-10 (IL-10), as well as jejunum and cecum luminal IFN-γ concentrations. Regardless of Eimeria challenge, when compared to 0.6% SID M+C, broilers fed ≥0.8% SID M+C had (1) increased (P < 0.05) BWG, FI, and G:F and (2) increased (P < 0.05) levels of jejunum luminal total IgA. After Eimeria challenge, broilers fed 0.8% SID M+C had increased (P < 0.05) levels of jejunum luminal anti-Eimeria IgA compared to broilers fed diets containing 0.6 and 1.0% SID M+C. Collectively, in 11- to 21-D broilers, the growth suppression caused by Eimeria infection could not be mitigated by further increasing dietary M+C alone ≥0.8%. Further research should investigate interactions between dietary M+C and other nutrients for support of immune function and growth in pathogen-challenged broilers.


Asunto(s)
Pollos/inmunología , Cisteína/farmacología , Metionina/farmacología , Enfermedades de las Aves de Corral/parasitología , Alimentación Animal/análisis , Animales , Anticuerpos Antiprotozoarios/metabolismo , Pollos/crecimiento & desarrollo , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Cisteína/administración & dosificación , Dieta/veterinaria , Eimeria/fisiología , Intestinos/inmunología , Masculino , Metionina/administración & dosificación , Oocistos , Enfermedades de las Aves de Corral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...