Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 48(10): 2531-2534, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37186700

RESUMEN

We report continuous measurements of the transmission spectrum of a fiber loop mirror interferometer composed of a Panda-type polarization-maintaining (PM) optical fiber during the diffusion of dihydrogen (H2) gas into the fiber. Birefringence variation is measured through the wavelength shift of the interferometer spectrum when the PM fiber is inserted into a gas chamber with H2 concentration from 1.5 to 3.5 vol.% at 75 bar and 70°C. The measurements correlated with simulation results of H2 diffusion into the fiber lead to a birefringence variation of -4.25 × 10-8 per mol m-3 of H2 concentration in the fiber, with a birefringence variation as low as -9.9×10-8 induced by 0.031 µmol m-1 of H2 dissolved in the single-mode silica fiber (for 1.5 vol.%). These results highlight a modification of the strain distribution in the PM fiber, induced by H2 diffusion, leading to a variation of the birefringence that could deteriorate the performances of fiber devices or improve H2 gas sensors.

2.
Opt Express ; 27(14): 19915-19930, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31503746

RESUMEN

We present an image-based autofocusing system applied in nonlinear microscopy and spectroscopy with a wide range of excitation wavelengths. The core of the developed autofocusing system consists of an adapted two-step procedure maximizing an image score with six different image scorings algorithms implemented to cover different types of focusing scenarios in automated regime for broad wavelength region. The developed approach is combined with an automated multi-axis alignment procedure. We demonstrate the key abilities of the autofocusing procedure on different types of structures: single nanoparticles, nanowires and complex 3D nanostructures. Based on these experiments, we determine the optimal autofocusing algorithms for different types of structures and applications.

3.
Nano Lett ; 19(2): 877-884, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30605602

RESUMEN

We combine the field confinement of plasmonics with the flexibility of multiple Mie resonances by bottom-up assembly of hybrid metal-dielectric nanodimers. We investigate the electromagnetic coupling between nanoparticles in heterodimers consisting of gold and barium titanate (BaTiO3 or BTO) nanoparticles through nonlinear second-harmonic spectroscopy and polarimetry. The overlap of the localized surface plasmon resonant dipole mode of the gold nanoparticle with the dipole and higher-order Mie resonant modes in the BTO nanoparticle lead to the formation of hybridized modes in the visible spectral range. We employ the pick-and-place technique to construct the hybrid nanodimers with controlled diameters by positioning the nanoparticles of different types next to each other under a scanning electron microscope. Through linear scattering spectroscopy, we observe the formation of hybrid modes in the nanodimers. We show that the modes can be directly accessed by measuring the dependence of the second-harmonic generation (SHG) signal on the polarization and wavelength of the pump. We reveal both experimentally and theoretically that the hybridization of plasmonic and Mie-resonant modes leads to a strong reshaping of the SHG polarization dependence in the nanodimers, which depends on the pump wavelength. We compare the SHG signal of each hybrid nanodimer with the SHG signal of single BTO nanoparticles to estimate the enhancement factor due to the resonant mode coupling within the nanodimers. We report up to 2 orders of magnitude for the SHG signal enhancement compared with isolated BTO nanoparticles.

4.
Nano Lett ; 18(6): 3695-3702, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29771127

RESUMEN

Nonradiating electromagnetic configurations in nanostructures open new horizons for applications due to two essential features: a lack of energy losses and invisibility to the propagating electromagnetic field. Such radiationless configurations form a basis for new types of nanophotonic devices, in which a strong electromagnetic field confinement can be achieved together with lossless interactions between nearby components. In our work, we present a new design of free-standing disk nanoantennas with nonradiating current distributions for the optical near-infrared range. We show a novel approach to creating nanoantennas by slicing III-V nanowires into standing disks using focused ion-beam milling. We experimentally demonstrate the suppression of the far-field radiation and the associated strong enhancement of the second-harmonic generation from the disk nanoantennas. With a theoretical analysis of the electromagnetic field distribution using multipole expansions in both spherical and Cartesian coordinates, we confirm that the demonstrated nonradiating configurations are anapoles. We expect that the presented procedure of designing and producing disk nanoantennas from nanowires becomes one of the standard approaches to fabricating controlled chains of standing nanodisks with different designs and configurations. These chains can be essential building blocks for new types of lasers and sensors with low power consumption.

5.
Nano Lett ; 17(9): 5381-5388, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28767247

RESUMEN

We show enhanced second-harmonic generation (SHG) from a hybrid metal-dielectric nanodimer consisting of an inorganic perovskite nanoparticle of barium titanate (BaTiO3) coupled to a metallic gold (Au) nanoparticle. BaTiO3-Au nanodimers of 100 nm/80 nm sizes are fabricated by sequential capillarity-assisted particle assembly. The BaTiO3 nanoparticle has a noncentrosymmetric crystalline structure and generates bulk SHG. We use the localized surface plasmon resonance of the gold nanoparticle to enhance the SHG from the BaTiO3 nanoparticle. We experimentally measure the nonlinear signal from assembled nanodimers and demonstrate an up to 15-fold enhancement compared to a single BaTiO3 nanoparticle. We further perform numerical simulations of the linear and SHG spectra of the BaTiO3-Au nanodimer and show that the gold nanoparticle acts as a nanoantenna at the SHG wavelength.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...