Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641660

RESUMEN

Imaging-based methods are widely used for studying the subcellular localization of proteins in living cells. While routine for individual proteins, global monitoring of protein dynamics following perturbation typically relies on arrayed panels of fluorescently tagged cell lines, limiting throughput and scalability. Here, we describe a strategy that combines high-throughput microscopy, computer vision and machine learning to detect perturbation-induced changes in multicolour tagged visual proteomics cell (vpCell) pools. We use genome-wide and cancer-focused intron-targeting sgRNA libraries to generate vpCell pools and a large, arrayed collection of clones each expressing two different endogenously tagged fluorescent proteins. Individual clones can be identified in vpCell pools by image analysis using the localization patterns and expression level of the tagged proteins as visual barcodes, enabling simultaneous live-cell monitoring of large sets of proteins. To demonstrate broad applicability and scale, we test the effects of antiproliferative compounds on a pool with cancer-related proteins, on which we identify widespread protein localization changes and new inhibitors of the nuclear import/export machinery. The time-resolved characterization of changes in subcellular localization and abundance of proteins upon perturbation in a pooled format highlights the power of the vpCell approach for drug discovery and mechanism-of-action studies.

2.
iScience ; 27(3): 109301, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38469563

RESUMEN

Persistent liver injury triggers a fibrogenic program that causes pathologic remodeling of the hepatic microenvironment (i.e., liver fibrosis) and portal hypertension. The dynamics of gene regulation during liver disease progression and early regression remain understudied. Here, we generated hepatic transcriptome profiles in two well-established liver disease models at peak fibrosis and during spontaneous regression after the removal of the inducing agents. We linked the dynamics of key disease readouts, such as portal pressure, collagen area, and transaminase levels, to differentially expressed genes, enabling the identification of transcriptomic signatures of progressive vs. regressive liver fibrosis and portal hypertension. These candidate biomarkers (e.g., Tcf4, Mmp7, Trem2, Spp1, Scube1, Islr) were validated in RNA sequencing datasets of patients with cirrhosis and portal hypertension, and those cured from hepatitis C infection. Finally, deconvolution identified major cell types and suggested an association of macrophage and portal hepatocyte signatures with portal hypertension and fibrosis area.

4.
Dev Cell ; 58(24): 2959-2973.e7, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38056453

RESUMEN

Inflammation is essential to the disruption of tissue homeostasis and can destabilize the identity of lineage-committed epithelial cells. Here, we employ lineage-traced mouse models, single-cell transcriptomic and chromatin analyses, and CUT&TAG to identify an epigenetic memory of inflammatory injury in the pancreatic acinar cell compartment. Despite resolution of pancreatitis, our data show that acinar cells fail to return to their molecular baseline, with retention of elevated chromatin accessibility and H3K4me1 at metaplasia genes, such that memory represents an incomplete cell fate decision. In vivo, we find this epigenetic memory controls lineage plasticity, with diminished metaplasia in response to a second insult but increased tumorigenesis with an oncogenic Kras mutation. The lowered threshold for oncogenic transformation, in turn, can be restored by blockade of MAPK signaling. Together, we define the chromatin dynamics, molecular encoding, and recall of a prolonged epigenetic memory of inflammatory injury that impacts future responses but remains reversible.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Memoria Epigenética , Transformación Celular Neoplásica/patología , Células Acinares/patología , Páncreas/patología , Cromatina/genética , Metaplasia/patología , Carcinoma Ductal Pancreático/genética
5.
bioRxiv ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37732282

RESUMEN

Natural killer (NK) cells develop from CD34+ progenitors in a stage-specific manner defined by changes in cell surface receptor expression and function. Secondary lymphoid tissues, including tonsil, are sites of human NK cell development. Here we present new insights into human NK cell development in pediatric tonsil using cyclic immunofluorescence and imaging mass cytometry. We show that NK cell subset localization and interactions are dependent on NK cell developmental stage and tissue residency. NK cell progenitors are found in the interfollicular domain in proximity to cytokine-expressing stromal cells that promote proliferation and maturation. Mature NK cells are primarily found in the T-cell rich parafollicular domain engaging in cell-cell interactions that differ depending on their stage and tissue residency. The presence of local inflammation results in changes in NK cell interactions, abundance, and localization. This study provides the first comprehensive atlas of human NK cell development in secondary lymphoid tissue.

6.
Cell ; 186(18): 3882-3902.e24, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37597510

RESUMEN

Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.


Asunto(s)
COVID-19 , Memoria Epigenética , Síndrome Post Agudo de COVID-19 , Animales , Humanos , Ratones , Diferenciación Celular , COVID-19/inmunología , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas , Inflamación/genética , Inmunidad Entrenada , Monocitos/inmunología , Síndrome Post Agudo de COVID-19/genética , Síndrome Post Agudo de COVID-19/inmunología , Síndrome Post Agudo de COVID-19/patología
8.
Am J Respir Crit Care Med ; 207(9): 1171-1182, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36796082

RESUMEN

Rationale: Remodeling and loss of distal conducting airways, including preterminal and terminal bronchioles (pre-TBs/TBs), underlie progressive airflow limitation in chronic obstructive pulmonary disease (COPD). The cellular basis of these structural changes remains unknown. Objectives: To identify biological changes in pre-TBs/TBs in COPD at single-cell resolution and determine their cellular origin. Methods: We established a novel method of distal airway dissection and performed single-cell transcriptomic profiling of 111,412 cells isolated from different airway regions of 12 healthy lung donors and pre-TBs of 5 patients with COPD. Imaging CyTOF and immunofluorescence analysis of pre-TBs/TBs from 24 healthy lung donors and 11 subjects with COPD were performed to characterize cellular phenotypes at a tissue level. Region-specific differentiation of basal cells isolated from proximal and distal airways was studied using an air-liquid interface model. Measurements and Main Results: The atlas of cellular heterogeneity along the proximal-distal axis of the human lung was assembled and identified region-specific cellular states, including SCGB3A2+ SFTPB+ terminal airway-enriched secretory cells (TASCs) unique to distal airways. TASCs were lost in COPD pre-TBs/TBs, paralleled by loss of region-specific endothelial capillary cells, increased frequency of CD8+ T cells normally enriched in proximal airways, and augmented IFN-γ signaling. Basal cells residing in pre-TBs/TBs were identified as a cellular origin of TASCs. Regeneration of TASCs by these progenitors was suppressed by IFN-γ. Conclusions: Altered maintenance of the unique cellular organization of pre-TBs/TBs, including loss of the region-specific epithelial differentiation in these bronchioles, represents the cellular manifestation and likely the cellular basis of distal airway remodeling in COPD.


Asunto(s)
Linfocitos T CD8-positivos , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Pulmón , Bronquiolos , Diagnóstico por Imagen
9.
medRxiv ; 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36482970

RESUMEN

SARS-CoV-2 infection can manifest as a wide range of respiratory and systemic symptoms well after the acute phase of infection in over 50% of patients. Key questions remain on the long-term effects of infection on tissue pathology in recovered COVID-19 patients. To address these questions we performed multiplexed imaging of post-mortem lung tissue from 12 individuals who died post-acute COVID-19 (PC) and compare them to lung tissue from patients who died during the acute phase of COVID-19, or patients who died with idiopathic pulmonary fibrosis (IPF), and otherwise healthy lung tissue. We find evidence of viral presence in the lung up to 359 days after the acute phase of disease, including in patients with negative nasopharyngeal swab tests. The lung of PC patients are characterized by the accumulation of senescent alveolar type 2 cells, fibrosis with hypervascularization of peribronchial areas and alveolar septa, as the most pronounced pathophysiological features. At the cellular level, lung disease of PC patients, while distinct, shares pathological features with the chronic pulmonary disease of IPF. which may help rationalize interventions for PC patients. Altogether, this study provides an important foundation for the understanding of the long-term effects of SARS-CoV-2 pulmonary infection at the microanatomical, cellular, and molecular level.

10.
Genome Biol ; 23(1): 256, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36514162

RESUMEN

Spatial omics technologies enable a deeper understanding of cellular organizations and interactions within a tissue of interest. These assays can identify specific compartments or regions in a tissue with differential transcript or protein abundance, delineate their interactions, and complement other methods in defining cellular phenotypes. A variety of spatial methodologies are being developed and commercialized; however, these techniques differ in spatial resolution, multiplexing capability, scale/throughput, and coverage. Here, we review the current and prospective landscape of single cell to subcellular resolution spatial omics technologies and analysis tools to provide a comprehensive picture for both research and clinical applications.


Asunto(s)
Genómica , Proteómica , Genómica/métodos , Proteómica/métodos , Estudios Prospectivos
12.
Nat Methods ; 19(12): 1653-1661, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36316562

RESUMEN

Multiplexed imaging and spatial transcriptomics enable highly resolved spatial characterization of cellular phenotypes, but still largely depend on laborious manual annotation to understand higher-order patterns of tissue organization. As a result, higher-order patterns of tissue organization are poorly understood and not systematically connected to disease pathology or clinical outcomes. To address this gap, we developed an approach called UTAG to identify and quantify microanatomical tissue structures in multiplexed images without human intervention. Our method combines information on cellular phenotypes with the physical proximity of cells to accurately identify organ-specific microanatomical domains in healthy and diseased tissue. We apply our method to various types of images across healthy and disease states to show that it can consistently detect higher-level architectures in human tissues, quantify structural differences between healthy and diseased tissue, and reveal tissue organization patterns at the organ scale.


Asunto(s)
Diagnóstico por Imagen , Transcriptoma , Humanos
13.
Sci Immunol ; 7(75): eadd4906, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36083891

RESUMEN

Lung-infiltrating macrophages create a marked inflammatory milieu in a subset of patients with COVID-19 by producing a cytokine storm, which correlates with increased lethality. However, these macrophages are largely not infected by SARS-CoV-2, so the mechanism underlying their activation in the lung is unclear. Type I interferons (IFN-I) contribute to protecting the host against SARS-CoV-2 but may also have some deleterious effect, and the source of IFN-I in the lungs of infected patients is not well defined. Plasmacytoid dendritic cells (pDCs), a key cell type involved in antiviral responses, can produce IFN-I in response to SARS-CoV-2. We observed the infiltration of pDCs in the lungs of SARS-CoV-2-infected patients, which correlated with strong IFN-I signaling in lung macrophages. In patients with severe COVID-19, lung macrophages expressed a robust inflammatory signature, which correlated with persistent IFN-I signaling at the single-cell level. Hence, we observed the uncoupling in the kinetics of the infiltration of pDCs in the lungs and the associated IFN-I signature, with the cytokine storm in macrophages. We observed that pDCs were the dominant IFN-α-producing cells in response to the virus in the blood, whereas macrophages produced IFN-α only when in physical contact with infected epithelial cells. We also showed that IFN-α produced by pDCs, after the sensing of SARS-CoV-2 by TLR7, mediated changes in macrophages at both transcriptional and epigenetic levels, which favored their hyperactivation by environmental stimuli. Together, these data indicate that the priming of macrophages can result from the response by pDCs to SARS-CoV-2, leading to macrophage activation in patients with severe COVID-19.


Asunto(s)
COVID-19 , Interferón Tipo I , Síndrome de Liberación de Citoquinas , Células Dendríticas/fisiología , Humanos , Interferón-alfa , Macrófagos , SARS-CoV-2
14.
Cell Rep Med ; 3(2): 100522, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35233546

RESUMEN

The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19), and what distinguishes them from common seasonal influenza virus and other lung injury states such as acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections.


Asunto(s)
COVID-19/genética , COVID-19/patología , Pulmón/patología , SARS-CoV-2 , Transcriptoma/genética , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/metabolismo , COVID-19/virología , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Regulación de la Expresión Génica , Humanos , Gripe Humana/genética , Gripe Humana/patología , Gripe Humana/virología , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Orthomyxoviridae , RNA-Seq/métodos , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/microbiología , Síndrome de Dificultad Respiratoria/patología , Carga Viral
15.
Gigascience ; 10(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34890448

RESUMEN

BACKGROUND: Organizing and annotating biological sample data is critical in data-intensive bioinformatics. Unfortunately, metadata formats from a data provider are often incompatible with requirements of a processing tool. There is no broadly accepted standard to organize metadata across biological projects and bioinformatics tools, restricting the portability and reusability of both annotated datasets and analysis software. RESULTS: To address this, we present the Portable Encapsulated Project (PEP) specification, a formal specification for biological sample metadata structure. The PEP specification accommodates typical features of data-intensive bioinformatics projects with many biological samples. In addition to standardization, the PEP specification provides descriptors and modifiers for project-level and sample-level metadata, which improve portability across both computing environments and data processing tools. PEPs include a schema validator framework, allowing formal definition of required metadata attributes for data analysis broadly. We have implemented packages for reading PEPs in both Python and R to provide a language-agnostic interface for organizing project metadata. CONCLUSIONS: The PEP specification is an important step toward unifying data annotation and processing tools in data-intensive biological research projects. Links to tools and documentation are available at http://pep.databio.org/.


Asunto(s)
Metadatos , Programas Informáticos , Biología Computacional , Documentación
17.
Circulation ; 144(12): 961-982, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34255973

RESUMEN

BACKGROUND: Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. METHODS: Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection. RESULTS: In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype. CONCLUSIONS: Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.


Asunto(s)
Aterosclerosis/inmunología , Diabetes Mellitus Experimental/inmunología , Hiperglucemia/inmunología , Inmunidad Celular/inmunología , Leucocitos Mononucleares/inmunología , Macrófagos/inmunología , Animales , Aterosclerosis/patología , Células Cultivadas , Diabetes Mellitus Experimental/patología , Endarterectomía Carotidea , Humanos , Hiperglucemia/patología , Leucocitos Mononucleares/patología , Macrófagos/patología , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos
18.
Nat Methods ; 18(6): 635-642, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34059827

RESUMEN

Cell atlas projects and high-throughput perturbation screens require single-cell sequencing at a scale that is challenging with current technology. To enable cost-effective single-cell sequencing for millions of individual cells, we developed 'single-cell combinatorial fluidic indexing' (scifi). The scifi-RNA-seq assay combines one-step combinatorial preindexing of entire transcriptomes inside permeabilized cells with subsequent single-cell RNA-seq using microfluidics. Preindexing allows us to load several cells per droplet and computationally demultiplex their individual expression profiles. Thereby, scifi-RNA-seq massively increases the throughput of droplet-based single-cell RNA-seq, and provides a straightforward way of multiplexing thousands of samples in a single experiment. Compared with multiround combinatorial indexing, scifi-RNA-seq provides an easy and efficient workflow. Compared to cell hashing methods, which flag and discard droplets containing more than one cell, scifi-RNA-seq resolves and retains individual transcriptomes from overloaded droplets. We benchmarked scifi-RNA-seq on various human and mouse cell lines, validated it for primary human T cells and applied it in a highly multiplexed CRISPR screen with single-cell transcriptome readout of T cell receptor activation.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Análisis Costo-Beneficio , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Humanos , Ratones , Microfluídica/métodos , Receptores de Antígenos de Linfocitos T/genética , Análisis de la Célula Individual/economía , Análisis de la Célula Individual/métodos , Transcriptoma
19.
Nat Commun ; 12(1): 3230, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050156

RESUMEN

Sequencing of cell-free DNA in the blood of cancer patients (liquid biopsy) provides attractive opportunities for early diagnosis, assessment of treatment response, and minimally invasive disease monitoring. To unlock liquid biopsy analysis for pediatric tumors with few genetic aberrations, we introduce an integrated genetic/epigenetic analysis method and demonstrate its utility on 241 deep whole-genome sequencing profiles of 95 patients with Ewing sarcoma and 31 patients with other pediatric sarcomas. Our method achieves sensitive detection and classification of circulating tumor DNA in peripheral blood independent of any genetic alterations. Moreover, we benchmark different metrics for cell-free DNA fragmentation analysis, and we introduce the LIQUORICE algorithm for detecting circulating tumor DNA based on cancer-specific chromatin signatures. Finally, we combine several fragmentation-based metrics into an integrated machine learning classifier for liquid biopsy analysis that exploits widespread epigenetic deregulation and is tailored to cancers with low mutation rates. Clinical associations highlight the potential value of cfDNA fragmentation patterns as prognostic biomarkers in Ewing sarcoma. In summary, our study provides a comprehensive analysis of circulating tumor DNA beyond recurrent genetic aberrations, and it renders the benefits of liquid biopsy more readily accessible for childhood cancers.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias Óseas/diagnóstico , ADN Tumoral Circulante/sangre , Sarcoma de Ewing/diagnóstico , Adolescente , Adulto , Biomarcadores de Tumor/genética , Neoplasias Óseas/sangre , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Estudios de Casos y Controles , Niño , Preescolar , ADN Tumoral Circulante/genética , Análisis Mutacional de ADN , Femenino , Humanos , Lactante , Biopsia Líquida/métodos , Masculino , Persona de Mediana Edad , Mutación , Sarcoma de Ewing/sangre , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología , Secuenciación Completa del Genoma , Adulto Joven
20.
Nature ; 595(7865): 114-119, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33915568

RESUMEN

Respiratory failure is the leading cause of death in patients with severe SARS-CoV-2 infection1,2, but the host response at the lung tissue level is poorly understood. Here we performed single-nucleus RNA sequencing of about 116,000 nuclei from the lungs of nineteen individuals who died of COVID-19 and underwent rapid autopsy and seven control individuals. Integrated analyses identified substantial alterations in cellular composition, transcriptional cell states, and cell-to-cell interactions, thereby providing insight into the biology of lethal COVID-19. The lungs from individuals with COVID-19 were highly inflamed, with dense infiltration of aberrantly activated monocyte-derived macrophages and alveolar macrophages, but had impaired T cell responses. Monocyte/macrophage-derived interleukin-1ß and epithelial cell-derived interleukin-6 were unique features of SARS-CoV-2 infection compared to other viral and bacterial causes of pneumonia. Alveolar type 2 cells adopted an inflammation-associated transient progenitor cell state and failed to undergo full transition into alveolar type 1 cells, resulting in impaired lung regeneration. Furthermore, we identified expansion of recently described CTHRC1+ pathological fibroblasts3 contributing to rapidly ensuing pulmonary fibrosis in COVID-19. Inference of protein activity and ligand-receptor interactions identified putative drug targets to disrupt deleterious circuits. This atlas enables the dissection of lethal COVID-19, may inform our understanding of long-term complications of COVID-19 survivors, and provides an important resource for therapeutic development.


Asunto(s)
COVID-19/patología , COVID-19/virología , Pulmón/patología , SARS-CoV-2/patogenicidad , Análisis de la Célula Individual , Anciano , Anciano de 80 o más Años , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Atlas como Asunto , Autopsia , COVID-19/inmunología , Estudios de Casos y Controles , Femenino , Fibroblastos/patología , Fibrosis/patología , Fibrosis/virología , Humanos , Inflamación/patología , Inflamación/virología , Macrófagos/patología , Macrófagos/virología , Macrófagos Alveolares/patología , Macrófagos Alveolares/virología , Masculino , Persona de Mediana Edad , Células Plasmáticas/inmunología , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA