Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Med Phys ; 41(8): 081916, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25086547

RESUMEN

PURPOSE: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. METHODS: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25 µm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated (18)F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. RESULTS: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90 ± 0.15 mm. CONCLUSIONS: The novel DoI PET detector, which is based on strip G-APD arrays, yielded a DoI resolution of 2.9 mm and excellent timing and energy resolution. Its high multiplexing factor reduces the number of electronic channels. Thus, this cross-strip approach enables low-cost, high-performance PET detectors for dedicated small animal PET and PET/MRI and potentially clinical PET/MRI systems.


Asunto(s)
Tomografía de Emisión de Positrones/instrumentación , Animales , Equipos y Suministros Eléctricos , Diseño de Equipo , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/instrumentación , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Tiempo
2.
J Synchrotron Radiat ; 16(Pt 1): 105-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19096181

RESUMEN

X-ray photon correlation spectroscopy (XPCS) provides an opportunity to study the dynamics of systems by measuring the temporal fluctuations in a far-field diffraction pattern. A two-dimensional detector system has been developed to investigate fluctuations in the frequency range of several Hz to kHz. The X-ray detector system consists of a thin 100 microm scintillation crystal coupled to a Geiger-mode avalanche photodiode array. In this article the elements of the system are detailed and the detector for XPCS measurements is demonstrated.

3.
Phys Rev Lett ; 100(15): 155503, 2008 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-18518122

RESUMEN

We introduce a coherent diffractive imaging technique that utilizes multiple exposures with modifications to the phase profile of the transmitted wave front to compensate for the missing phase information. This is a single spot technique sensitive to both the transmission and phase shift through the sample. Along with the details of the method, we present results from the first proof of principle experiment. The experiment was performed with 6.0 keV x rays, in which an estimated spatial resolution of 200 nm was achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...