Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Genes (Basel) ; 15(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38790258

RESUMEN

RNA-binding proteins and chemical modifications to RNA play vital roles in the co- and post-transcriptional regulation of genes. In order to fully decipher their biological roles, it is an essential task to catalogue their precise target locations along with their preferred contexts and sequence-based determinants. Recently, deep learning approaches have significantly advanced in this field. These methods can predict the presence or absence of modification at specific genomic regions based on diverse features, particularly sequence and secondary structure, allowing us to decipher the highly non-linear sequence patterns and structures that underlie site preferences. This article provides an overview of how deep learning is being applied to this area, with a particular focus on the problem of mRNA-RBP binding, while also considering other types of chemical modification to RNA. It discusses how different types of model can handle sequence-based and/or secondary-structure-based inputs, the process of model training, including choice of negative regions and separating sets for testing and training, and offers recommendations for developing biologically relevant models. Finally, it highlights four key areas that are crucial for advancing the field.


Asunto(s)
Aprendizaje Profundo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN/genética , ARN/química , Conformación de Ácido Nucleico
2.
Cancer Sci ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659235

RESUMEN

N6-methyladenosine (m6A) is an RNA modification involved in RNA processing and widely found in transcripts. In cancer cells, m6A is upregulated, contributing to their malignant transformation. In this study, we analyzed gene expression and m6A modification in cancer tissues, ducts, and acinar cells derived from pancreatic cancer patients using MeRIP-seq. We found that dozens of RNAs highly modified by m6A were detected in cancer tissues compared with ducts and acinar cells. Among them, the m6A-activated mRNA TCEAL8 was observed, for the first time, as a potential marker gene in pancreatic cancer. Spatially resolved transcriptomic analysis showed that TCEAL8 was highly expressed in specific cells, and activation of cancer-related signaling pathways was observed relative to TCEAL8-negative cells. Furthermore, among TCEAL8-positive cells, the cells expressing the m6A-modifying enzyme gene METTL3 showed co-activation of Notch and mTOR signaling, also known to be involved in cancer metastasis. Overall, these results suggest that m6A-activated TCEAL8 is a novel marker gene involved in the malignant transformation of pancreatic cancer.

4.
Noncoding RNA ; 9(5)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37736896

RESUMEN

The NLRP3 inflammasome plays a pivotal role in regulating inflammation and immune responses. Its activation can lead to an inflammatory response and pyroptotic cell death. This is beneficial in the case of infections, but excessive activation can lead to chronic inflammation and tissue damage. Moreover, while most of the mammalian genome is transcribed as RNAs, only a small fraction codes for proteins. Among non-protein-coding RNAs, long non-coding RNAs (lncRNAs) have been shown to play key roles in regulating gene expression and cellular processes. They interact with DNA, RNAs, and proteins, and their dysregulation can provide insights into disease mechanisms, including NLRP3 inflammasome activation. Here, we systematically analyzed previously published RNA sequencing (RNA-seq) data of NLRP3 inflammasome activation in monocytes/macrophages to uncover inflammasome-regulated lncRNA genes. To uncover the functional importance of inflammasome-regulated lncRNA genes, one inflammasome-regulated lncRNA, ENSG00000273124, was knocked down in an in vitro model of macrophage polarization. The results indicate that silencing of ENSG00000273124 resulted in the up-regulation tumor necrosis factor (TNF), suggesting that this lncRNA might be involved in pro-inflammatory response in macrophages. To make our analyzed data more accessible, we developed the web database InflammasomeDB.

5.
BioTech (Basel) ; 12(3)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37754200

RESUMEN

RNA, like DNA and proteins, can undergo modifications. To date, over 170 RNA modifications have been identified, leading to the emergence of a new research area known as epitranscriptomics. RNA editing is the most frequent RNA modification in mammalian transcriptomes, and two types have been identified: (1) the most frequent, adenosine to inosine (A-to-I); and (2) the less frequent, cysteine to uracil (C-to-U) RNA editing. Unlike other epitranscriptomic marks, RNA editing can be readily detected from RNA sequencing (RNA-seq) data without any chemical conversions of RNA before sequencing library preparation. Furthermore, analyzing RNA editing patterns from transcriptomic data provides an additional layer of information about the epitranscriptome. As the significance of epitranscriptomics, particularly RNA editing, gains recognition in various fields of biology and medicine, there is a growing interest in detecting RNA editing sites (RES) by analyzing RNA-seq data. To cope with this increased interest, several bioinformatic tools are available. However, each tool has its advantages and disadvantages, which makes the choice of the most appropriate tool for bench scientists and clinicians difficult. Here, we have benchmarked bioinformatic tools to detect RES from RNA-seq data. We provide a comprehensive view of each tool and its performance using previously published RNA-seq data to suggest recommendations on the most appropriate for utilization in future studies.

6.
N Z Med J ; 136(1579): 86-95, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37501247

RESUMEN

Enabling patients to consent to or decline involvement of medical students in their care is an essential aspect of ethically sound, patient-centred, mana-enhancing healthcare. It is required by Aotearoa New Zealand law and Te Kaunihera Rata o Aotearoa Medical Council of New Zealand policy. This requirement was affirmed and explored in a 2015 Consensus Statement jointly authored by the Auckland and Otago Medical Schools. Student reporting through published studies, reflective assignments and anecdotal experiences of students and teachers indicate procedures for obtaining patient consent to student involvement in care remain substandard at times. Between 2020 and 2023 senior leaders of Aotearoa New Zealand's two medical schools, and faculty involved with teaching ethics and professionalism, met to discuss these challenges and reflect on ways they could be addressed. Key stakeholders were engaged to inform proposed responses. This updated consensus statement is the result. It does not establish new standards but outlines Aotearoa New Zealand's existing cultural, ethical, legal and regulatory requirements, and considers how these may be reasonably and feasibly met using some examples.


Asunto(s)
Ética Médica , Estudiantes de Medicina , Humanos , Nueva Zelanda , Consentimiento Informado , Atención al Paciente
7.
EMBO J ; 42(18): e113378, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37431920

RESUMEN

In virus-host interactions, nucleic acid-directed first lines of defense that allow viral clearance without compromising growth are of paramount importance. Plants use the RNA interference pathway as a basal antiviral immune system, but additional RNA-based mechanisms of defense also exist. The infectivity of a plant positive-strand RNA virus, alfalfa mosaic virus (AMV), relies on the demethylation of viral RNA by the recruitment of the cellular N6-methyladenosine (m6 A) demethylase ALKBH9B, but how demethylation of viral RNA promotes AMV infection remains unknown. Here, we show that inactivation of the Arabidopsis cytoplasmic YT521-B homology domain (YTH)-containing m6 A-binding proteins ECT2, ECT3, and ECT5 is sufficient to restore AMV infectivity in partially resistant alkbh9b mutants. We further show that the antiviral function of ECT2 is distinct from its previously demonstrated function in the promotion of primordial cell proliferation: an ect2 mutant carrying a small deletion in its intrinsically disordered region is partially compromised for antiviral defense but not for developmental functions. These results indicate that the m6 A-YTHDF axis constitutes a novel branch of basal antiviral immunity in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Virus ARN , Antivirales , Proteínas de Plantas/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/metabolismo , ARN Viral/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
8.
Noncoding RNA ; 9(4)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37489459

RESUMEN

Cancer and cardiovascular disease are the leading causes of death worldwide. Recent evidence suggests that these two life-threatening diseases share several features in disease progression, such as angiogenesis, fibrosis, and immune responses. This has led to the emergence of a new field called cardio-oncology. Doxorubicin is a chemotherapy drug widely used to treat cancer, such as bladder and breast cancer. However, this drug causes serious side effects, including acute ventricular dysfunction, cardiomyopathy, and heart failure. Based on this evidence, we hypothesize that comparing the expression profiles of cells and tissues treated with doxorubicin may yield new insights into the adverse effects of the drug on cellular activities. To test this hypothesis, we analyzed published RNA sequencing (RNA-seq) data from doxorubicin-treated cells to identify commonly differentially expressed genes, including long non-coding RNAs (lncRNAs) as they are known to be dysregulated in diseased tissues and cells. From our systematic analysis, we identified several doxorubicin-induced genes. To confirm these findings, we treated human cardiac fibroblasts with doxorubicin to record expression changes in the selected doxorubicin-induced genes and performed a loss-of-function experiment of the lncRNA MAP3K4-AS1. To further disseminate the analyzed data, we built the web database DoxoDB.

9.
ANZ J Surg ; 93(5): 1128-1129, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37226664
10.
Mol Syst Biol ; 19(7): e11392, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37158788

RESUMEN

Many genes are co-expressed and form genomic domains of coordinated gene activity. However, the regulatory determinants of domain co-activity remain unclear. Here, we leverage human individual variation in gene expression to characterize the co-regulatory processes underlying domain co-activity and systematically quantify their effect sizes. We employ transcriptional decomposition to extract from RNA expression data an expression component related to co-activity revealed by genomic positioning. This strategy reveals close to 1,500 co-activity domains, covering most expressed genes, of which the large majority are invariable across individuals. Focusing specifically on domains with high variability in co-activity reveals that contained genes have a higher sharing of eQTLs, a higher variability in enhancer interactions, and an enrichment of binding by variably expressed transcription factors, compared to genes within non-variable domains. Through careful quantification of the relative contributions of regulatory processes underlying co-activity, we find transcription factor expression levels to be the main determinant of gene co-activity. Our results indicate that distal trans effects contribute more than local genetic variation to individual variation in co-activity domains.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Genoma , Genómica
11.
Noncoding RNA ; 9(3)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37218990

RESUMEN

Type II diabetes (T2D) is a growing health problem worldwide due to increased levels of obesity and can lead to other life-threatening diseases, such as cardiovascular and kidney diseases. As the number of individuals diagnosed with T2D rises, there is an urgent need to understand the pathogenesis of the disease in order to prevent further harm to the body caused by elevated blood glucose levels. Recent advances in long non-coding RNA (lncRNA) research may provide insights into the pathogenesis of T2D. Although lncRNAs can be readily detected in RNA sequencing (RNA-seq) data, most published datasets of T2D patients compared to healthy donors focus only on protein-coding genes, leaving lncRNAs to be undiscovered and understudied. To address this knowledge gap, we performed a secondary analysis of published RNA-seq data of T2D patients and of patients with related health complications to systematically analyze the expression changes of lncRNA genes in relation to the protein-coding genes. Since immune cells play important roles in T2D, we conducted loss-of-function experiments to provide functional data on the T2D-related lncRNA USP30-AS1, using an in vitro model of pro-inflammatory macrophage activation. To facilitate lncRNA research in T2D, we developed a web application, T2DB, to provide a one-stop-shop for expression profiling of protein-coding and lncRNA genes in T2D patients compared to healthy donors or subjects without T2D.

12.
Am J Physiol Cell Physiol ; 324(4): C837-C842, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36847441

RESUMEN

Adenosine to inosine (A-to-I) RNA editing is one of the most frequent RNA modifications found in the mammalian transcriptome. Recent studies clearly indicate that RNA editing enzymes, adenosine deaminase acting on RNAs (ADARs), are upregulated in stressed cells and under disease conditions, suggesting that monitoring RNA editing patterns might be useful as diagnostic biomarkers of various diseases. Here, we provide an overview of epitranscriptomics, and focus particularly on the detection and analysis of A-to-I RNA editing using bioinformatic tools in RNA-seq data sets, as well as briefly reviewing the existing evidence about its involvement in disease progressions. Finally, we argue for the detection of RNA editing patterns as part of the routine analysis in RNA-based data sets, with the aim of accelerating the identification of RNA editing targets linked to disease.


Asunto(s)
Edición de ARN , ARN , Animales , Edición de ARN/genética , Transcriptoma/genética , Biomarcadores , Mamíferos
13.
ANZ J Surg ; 93(1-2): 83-89, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35848599

RESUMEN

BACKGROUND: Women remain underrepresented in Surgery in Aotearoa New Zealand (AoNZ). This study described interest in surgical careers by gender in the early postgraduate period and associated influencing factors. METHODS: AoNZ medical graduates between 2012 and 2016 responding to an Exit Questionnaire (EQ) at graduation and 3 years later (PGY3) as part of the Medical Schools Outcomes Database and Longitudinal Tracking Project (MSOD) were included. Analyses of specialty preferences and influences by gender were performed. RESULTS: Of 992 participants, 58% were women. At EQ, 158 participants (16%) had a surgical preference: 21% of men and 14% of women (P < 0.01). By PGY3, this was 20% of men and 10% of women (P < 0.01). A logistic regression found women were half as likely as men to have a surgical preference at PGY3. Those with a surgical preference at EQ were over 23 times more likely to have a surgical preference at PGY3, irrespective of gender. There were significant differences in self-reported career influencing factors between women and men at EQ and PGY3, as well as between PGY3 women with a surgical and those with a non-surgical preference. These included nature of the specialty, training requirements, lifestyle, family and personal factors. CONCLUSIONS: Increasing the proportion of women in Surgery requires a multifaceted approach starting during medical school and continuing through early postgraduate years. More needs to be done to make surgical experiences as an undergraduate and junior doctor appealing to women.


Asunto(s)
Medicina , Estudiantes de Medicina , Masculino , Humanos , Femenino , Estudios Longitudinales , Selección de Profesión , Encuestas y Cuestionarios
15.
Elife ; 112022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377861

RESUMEN

Genetic and environmental exposures cause variability in gene expression. Although most genes are affected in a population, their effect sizes vary greatly, indicating the existence of regulatory mechanisms that could amplify or attenuate expression variability. Here, we investigate the relationship between the sequence and transcription start site architectures of promoters and their expression variability across human individuals. We find that expression variability can be largely explained by a promoter's DNA sequence and its binding sites for specific transcription factors. We show that promoter expression variability reflects the biological process of a gene, demonstrating a selective trade-off between stability for metabolic genes and plasticity for responsive genes and those involved in signaling. Promoters with a rigid transcription start site architecture are more prone to have variable expression and to be associated with genetic variants with large effect sizes, while a flexible usage of transcription start sites within a promoter attenuates expression variability and limits genotypic effects. Our work provides insights into the variable nature of responsive genes and reveals a novel mechanism for supplying transcriptional and mutational robustness to essential genes through multiple transcription start site regions within a promoter.


Asunto(s)
Factores de Transcripción , Transcripción Genética , Humanos , Secuencia de Bases , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Sitios de Unión , Mutación
17.
18.
Elife ; 102021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34591013

RESUMEN

Gene regulation via N6-methyladenosine (m6A) in mRNA involves RNA-binding proteins that recognize m6A via a YT521-B homology (YTH) domain. The plant YTH domain proteins ECT2 and ECT3 act genetically redundantly in stimulating cell proliferation during organogenesis, but several fundamental questions regarding their mode of action remain unclear. Here, we use HyperTRIBE (targets of RNA-binding proteins identified by editing) to show that most ECT2 and ECT3 targets overlap, with only a few examples of preferential targeting by either of the two proteins. HyperTRIBE in different mutant backgrounds also provides direct views of redundant, ectopic, and specific target interactions of the two proteins. We also show that contrary to conclusions of previous reports, ECT2 does not accumulate in the nucleus. Accordingly, inactivation of ECT2, ECT3, and their surrogate ECT4 does not change patterns of polyadenylation site choice in ECT2/3 target mRNAs, but does lead to lower steady-state accumulation of target mRNAs. In addition, mRNA and microRNA expression profiles show indications of stress response activation in ect2/ect3/ect4 mutants, likely via indirect effects. Thus, previous suggestions of control of alternative polyadenylation by ECT2 are not supported by evidence, and ECT2 and ECT3 act largely redundantly to regulate target mRNA, including its abundance, in the cytoplasm.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Poliadenilación , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Comunicación Celular , Péptidos y Proteínas de Señalización Intracelular/genética , Unión Proteica , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
19.
Elife ; 102021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34591015

RESUMEN

Specific recognition of N6-methyladenosine (m6A) in mRNA by RNA-binding proteins containing a YT521-B homology (YTH) domain is important in eukaryotic gene regulation. The Arabidopsis YTH domain protein ECT2 is thought to bind to mRNA at URU(m6A)Y sites, yet RR(m6A)CH is the canonical m6A consensus site in all eukaryotes and ECT2 functions require m6A-binding activity. Here, we apply iCLIP (individual nucleotide resolution crosslinking and immunoprecipitation) and HyperTRIBE (targets of RNA-binding proteins identified by editing) to define high-quality target sets of ECT2 and analyze the patterns of enriched sequence motifs around ECT2 crosslink sites. Our analyses show that ECT2 does in fact bind to RR(m6A)CH. Pyrimidine-rich motifs are enriched around, but not at m6A sites, reflecting a preference for N6-adenosine methylation of RRACH/GGAU islands in pyrimidine-rich regions. Such motifs, particularly oligo-U and UNUNU upstream of m6A sites, are also implicated in ECT2 binding via its intrinsically disordered region (IDR). Finally, URUAY-type motifs are enriched at ECT2 crosslink sites, but their distinct properties suggest function as sites of competition between binding of ECT2 and as yet unidentified RNA-binding proteins. Our study provides coherence between genetic and molecular studies of m6A-YTH function in plants and reveals new insight into the mode of RNA recognition by YTH domain-containing proteins.


Genes are strings of genetic code that contain instructions for producing a cell's proteins. Active genes are copied from DNA into molecules called mRNAs, and mRNA molecules are subsequently translated to create new proteins. However, the number of proteins produced by a cell is not only limited by the number of mRNA molecules produced by copying DNA. Cells use a variety of methods to control the stability of mRNA molecules and their translation efficiency to regulate protein production. One of these methods involves adding a chemical tag, a methyl group, onto mRNA while it is being created. These methyl tags can then be used as docking stations by RNA-binding proteins that help regulate protein translation. Most eukaryotic species ­ which include animals, plants and fungi ­ use the same system to add methyl tags to mRNA molecules. One methyl tag in particular, known as m6A, is a well-characterised docking site for a particular type of RNA-binding protein that goes by the name of ECT2 in plants. However, in the flowering plant Arabidopsis thaliana, ECT2 was thought to bind to an mRNA sequence different from the one normally carrying the chemical tag, creating obvious confusion about how the system works in plants. Arribas-Hernández, Rennie et al. investigated this question using advanced large-scale biochemical techniques, and discovered that conventional m6A methyl tags are indeed used by ECT2 in Arabidopsis thaliana. The confusion likely arose because the sequence ECT2 was thought bind is often located in close proximity to the m6A tags, possibly acting as docking stations for proteins that can influence the ability of ECT2 to bind mRNA. Arribas-Hernández, Rennie et al. also uncovered additional mRNA sequences that directly interact with parts of ECT2 previously unknown to participate in mRNA binding. These findings provide new insights into how chemical labels in mRNA control gene activity. They have broad implications that extend beyond plants into other eukaryotic species, including humans. Since this chemical labelling system has a major role in controlling plant growth, these findings could be leveraged in biotechnology applications to improve crop yields and enhance plant-based food production.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Adenosina/metabolismo , Arabidopsis/fisiología , Metilación , Unión Proteica , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo
20.
Med Educ ; 55(10): 1214, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33978267

Asunto(s)
Aprendizaje , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA