Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 527(1): 232-237, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32446373

RESUMEN

The human fungal pathogen Aspergillus fumigatus causes life-threatening invasive aspergillosis in immunocompromised individuals. Adaptation to the host environment is integral to survival of A. fumigatus and requires the coordination of short- and long-distance vesicular transport to move essential components throughout the fungus. We previously reported the importance of MyoE, the only class V myosin, for hyphal growth and virulence of A. fumigatus. Class V myosins are actin-based, cargo-carrying motor proteins that contain unique binding sites for specific cargo. Specific cargo carried by myosin V has not been identified in any fungus, and previous studies have only identified single components that interact with class V myosins. Here we utilized a mass spectrometry-based whole proteomic approach to identify MyoE interacting proteins in A. fumigatus for the first time. Several proteins previously shown to interact with myosin V through physical and genetic approaches were confirmed, validating our proteomic analysis. Importantly, we identified novel MyoE-interacting proteins, including members of the cytoskeleton network, cell wall synthesis, calcium signaling and a group of coat protein complex II (COPII) proteins involved in the endoplasmic reticulum (ER) to Golgi transport. Furthermore, we analyzed the localization patterns of the COPII proteins, UsoA (Uso1), SrgE (Sec31), and SrgF (Sec23), which suggested a potential role for MyoE in ER to Golgi trafficking.


Asunto(s)
Aspergillus fumigatus/química , Vesículas Cubiertas por Proteínas de Revestimiento/química , Miosina Tipo V/química , Transporte Biológico , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Humanos , Microscopía Fluorescente , Miosina Tipo V/aislamiento & purificación , Miosina Tipo V/metabolismo
2.
J Cell Sci ; 131(3)2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29222113

RESUMEN

Myosins are critical motor proteins that contribute to the secretory pathway, polarized growth, and cytokinesis. The globular tail domains of class V myosins have been shown to be important for cargo binding and actin cable organization. Additionally, phosphorylation plays a role in class V myosin cargo choice. Our previous studies on the class V myosin MyoE in the fungal pathogen Aspergillus fumigatus confirmed its requirement for normal morphology and virulence. However, the domains and molecular mechanisms governing the functions of MyoE remain unknown. Here, by analyzing tail mutants, we demonstrate that the tail is required for radial growth, conidiation, septation frequency and MyoE's location at the septum. Furthermore, MyoE is phosphorylated at multiple residues in vivo; however, alanine substitution mutants revealed that no single phosphorylated residue was critical. Importantly, in the absence of the phosphatase calcineurin, an additional residue was phosphorylated in its tail domain. Mutation of this tail residue led to mislocalization of MyoE from the septa. This work reveals the importance of the MyoE tail domain and its phosphorylation/dephosphorylation in the growth and morphology of A. fumigatus.


Asunto(s)
Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hifa/crecimiento & desarrollo , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Acetilación , Actinas/metabolismo , Calcineurina/metabolismo , Secuencia Conservada , Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Fenotipo , Fosforilación , Dominios Proteicos , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Eliminación de Secuencia , Esporas Fúngicas/metabolismo , Relación Estructura-Actividad
3.
Biochem Biophys Res Commun ; 485(2): 221-226, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28238781

RESUMEN

Aspergillus fumigatus, the main etiological agent of invasive aspergillosis, is a leading cause of death in immunocompromised patients. Septins, a conserved family of GTP-binding proteins, serve as scaffolding proteins to recruit enzymes and key regulators to different cellular compartments. Deletion of the A. fumigatus septin aspB increases susceptibility to the echinocandin antifungal caspofungin. However, how AspB mediates this response to caspofungin is unknown. Here, we characterized the AspB interactome under basal conditions and after exposure to a clinically relevant concentration of caspofungin. While A. fumigatus AspB interacted with 334 proteins, including kinases, cell cycle regulators, and cell wall synthesis-related proteins under basal growth conditions, caspofungin exposure altered AspB interactions. A total of 69 of the basal interactants did not interact with AspB after exposure to caspofungin, and 54 new interactants were identified following caspofungin exposure. We generated A. fumigatus deletion strains for 3 proteins (ArpB, Cyp4, and PpoA) that only interacted with AspB following exposure to caspofungin that were previously annotated as induced after exposure to antifungal agents, yet only PpoA was implicated in the response to caspofungin. Taken together, we defined how the septin AspB interactome is altered in the presence of a clinically relevant antifungal.


Asunto(s)
Antifúngicos/farmacología , Aspergilosis/tratamiento farmacológico , Aspergillus fumigatus/efectos de los fármacos , Equinocandinas/farmacología , Proteínas Fúngicas/metabolismo , Lipopéptidos/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Septinas/metabolismo , Aspergilosis/microbiología , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Caspofungina , Proteínas Fúngicas/genética , Eliminación de Gen , Humanos , Septinas/genética
4.
Front Microbiol ; 7: 997, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446037

RESUMEN

Septins are a conserved family of GTPases that form hetero-oligomeric complexes and perform diverse functions in higher eukaryotes, excluding plants. Our previous studies in the human fungal pathogen Aspergillus fumigatus revealed that the core septin, AspB, a CDC3 ortholog, is required for septation, conidiation, and conidial cell wall organization. Although AspB is important for these cellular functions, nothing is known about the role of kinases or phosphatases in the posttranslational regulation and localization of septins in A. fumigatus. In this study, we assessed the function of the Gin4 and Cla4 kinases and the PP2A regulatory subunit ParA, in the regulation of AspB using genetic and phosphoproteomic approaches. Gene deletion analyses revealed that Cla4 and ParA are indispensable for hyphal extension, and Gin4, Cla4, and ParA are each required for conidiation and normal septation. While deletion of gin4 resulted in larger interseptal distances and hypervirulence, a phenotype mimicking aspB deletion, deletion of cla4 and parA caused hyperseptation without impacting virulence, indicating divergent roles in regulating septation. Phosphoproteomic analyses revealed that AspB is phosphorylated at five residues in the GTPase domain (S134, S137, S247, T297, and T301) and two residues at its C-terminus (S416 and S461) in the wild-type, Δgin4 and Δcla4 strains. However, concomitant with the differential localization pattern of AspB and hyperseptation in the ΔparA strain, AspB remained phosphorylated at two additional residues, T68 in the N-terminal polybasic region and S447 in the coiled-coil domain. Generation of nonphosphorylatable and phosphomimetic strains surrounding each differentially phosphorylated residue revealed that only AspB (mt) -T68E showed increased interseptal distances, suggesting that dephosphorylation of T68 is important for proper septation. This study highlights the importance of septin phosphorylation/dephosphorylation in the regulation of A. fumigatus hyphal septation.

5.
Infect Immun ; 84(5): 1556-64, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26953327

RESUMEN

Myosins are a family of actin-based motor proteins found in many organisms and are categorized into classes based on their structures. Class II and V myosins are known to be important for critical cellular processes, including cytokinesis, endocytosis, exocytosis, and organelle trafficking, in the model fungi Saccharomyces cerevisiae and Aspergillus nidulans However, the roles of myosins in the growth and virulence of the pathogen Aspergillus fumigatus are unknown. We constructed single- and double-deletion strains of the class II and class V myosins in A. fumigatus and found that while the class II myosin (myoB) is dispensable for growth, the class V myosin (myoE) is required for proper hyphal extension; deletion of myoE resulted in hyperbranching and loss of hyphal polarity. Both myoB and myoE are necessary for proper septation, conidiation, and conidial germination, but only myoB is required for conidial viability. Infection with the ΔmyoE strain in the invertebrate Galleria mellonella model and also in a persistently immunosuppressed murine model of invasive aspergillosis resulted in hypovirulence, while analysis of bronchoalveolar lavage fluid revealed that tumor necrosis factor alpha (TNF-α) release and cellular infiltration were similar compared to those of the wild-type strain. The ΔmyoE strain showed fungal growth in the murine lung, while the ΔmyoB strain exhibited little fungal burden, most likely due to the reduced conidial viability. These results show, for the first time, the important role these cytoskeletal components play in the growth of and disease caused by a known pathogen, prompting future studies to understand their regulation and potential targeting for novel antifungal therapies.


Asunto(s)
Aspergillus fumigatus/crecimiento & desarrollo , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/metabolismo , Hifa/crecimiento & desarrollo , Miosinas/metabolismo , Animales , Aspergilosis/microbiología , Aspergilosis/patología , Aspergillus fumigatus/genética , Recuento de Colonia Microbiana , Proteínas Fúngicas/genética , Técnicas de Inactivación de Genes , Pulmón/microbiología , Masculino , Ratones , Viabilidad Microbiana , Miosinas/deficiencia , Esporas Fúngicas/crecimiento & desarrollo , Virulencia
6.
PLoS One ; 10(9): e0137869, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26366742

RESUMEN

Invasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus) that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs) form a complex with calcineurin in the presence of FK506 (FKBP12-FK506) and inhibit calcineurin activity. Research on FKBPs in fungi is limited, and none of the FKBPs have been previously characterized in A. fumigatus. We identified four orthologous genes of FKBP12, the human FK506 binding partner, in A. fumigatus and designated them fkbp12-1, fkbp12-2, fkbp12-3, and fkbp12-4. Deletional analysis of the four genes revealed that the Δfkbp12-1 strain was resistant to FK506, indicating FKBP12-1 as the key mediator of FK506-binding to calcineurin. The endogenously expressed FKBP12-1-EGFP fusion protein localized to the cytoplasm and nuclei under normal growth conditions but also to the hyphal septa following FK506 treatment, revealing its interaction with calcineurin. The FKBP12-1-EGFP fusion protein didn't localize at the septa in the presence of FK506 in the cnaA deletion background, confirming its interaction with calcineurin. Testing of all deletion strains in the Galleria mellonella model of aspergillosis suggested that these proteins don't play an important role in virulence. While the Δfkbp12-2 and Δfkbp12-3 strains didn't show any discernable phenotype, the Δfkbp12-4 strain displayed slight growth defect under normal growth conditions and inhibition of the caspofungin-mediated "paradoxical growth effect" at higher concentrations of the antifungal caspofungin. Together, these results indicate that while only FKBP12-1 is the bona fide binding partner of FK506, leading to the inhibition of calcineurin in A. fumigatus, FKBP12-4 may play a role in basal growth and the caspofungin-mediated paradoxical growth response. Exploitation of differences between A. fumigatus FKBP12-1 and human FKBP12 will be critical for the generation of fungal-specific FK506 analogs to inhibit fungal calcineurin and treat invasive fungal disease.


Asunto(s)
Aspergillus fumigatus/genética , Proteína 1A de Unión a Tacrolimus/genética , Animales , Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/patogenicidad , Calcineurina/metabolismo , Caspofungina , Ciclosporina/farmacología , Equinocandinas/farmacología , Eliminación de Gen , Humanos , Hifa/efectos de los fármacos , Hifa/genética , Hifa/crecimiento & desarrollo , Lipopéptidos , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/microbiología , Filogenia , Tacrolimus/metabolismo , Tacrolimus/farmacología , Proteína 1A de Unión a Tacrolimus/metabolismo
7.
Fungal Genet Biol ; 81: 41-51, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26051489

RESUMEN

Septins are a conserved family of GTPases that regulate important cellular processes such as cell wall integrity, and septation in fungi. The requirement of septins for virulence has been demonstrated in the human pathogenic yeasts Candida albicans and Cryptococcus neoformans, as well as the plant pathogen Magnaporthe oryzae. Aspergillus spp. contains five genes encoding for septins (aspA-E). While the importance of septins AspA, AspB, AspC, and AspE for growth and conidiation has been elucidated in the filamentous fungal model Aspergillus nidulans, nothing is known on the role of septins in growth and virulence in the human pathogen Aspergillus fumigatus. Here we deleted all five A. fumigatus septins, and generated certain double and triple septin deletion strains. Phenotypic analyses revealed that while all the septins are dispensable in normal growth conditions, AspA, AspB, AspC and AspE are required for regular septation. Furthermore, deletion of only the core septin genes significantly reduced conidiation. Concomitant with the absence of an electron-dense outer conidial wall, the ΔaspB strain was also sensitive to anti-cell wall agents. Infection with the ΔaspB strain in a Galleria mellonella model of invasive aspergillosis showed hypervirulence, but no virulence difference was noted when compared to the wild-type strain in a murine model of invasive aspergillosis. Although the deletion of aspB resulted in increased release of TNF-α from the macrophages, no significant inflammation differences in lung histology was noted between the ΔaspB strain and the wild-type strain. Taken together, these results point to the importance of septins in A. fumigatus growth, but not virulence in a murine model.


Asunto(s)
Aspergillus fumigatus/fisiología , División Celular , Pared Celular/metabolismo , Septinas/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Animales , Aspergilosis/microbiología , Aspergilosis/patología , Aspergillus fumigatus/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Lepidópteros/microbiología , Lepidópteros/fisiología , Ratones , Septinas/genética , Virulencia
8.
Virology ; 450-451: 213-21, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24503084

RESUMEN

Orsay virus is the first identified virus that is capable of naturally infecting Caenorhabditis elegans. Although it is most closely related to nodaviruses, Orsay virus differs from nodaviruses in its genome organization. In particular, the Orsay virus RNA2 segment encodes a putative novel protein of unknown function, termed delta, which is absent from all known nodaviruses. Here we present evidence that Orsay virus utilizes a ribosomal frameshifting strategy to express a novel fusion protein from the viral capsid (alpha) and delta ORFs. Moreover, the fusion protein was detected in purified virus fractions, demonstrating that it is most likely incorporated into Orsay virions. Furthermore, N-terminal sequencing of both the fusion protein and the capsid protein demonstrated that these proteins must be translated from a non-canonical initiation site. While the function of the alpha-delta fusion remains cryptic, these studies provide novel insights into the fundamental properties of this new clade of viruses.


Asunto(s)
Sistema de Lectura Ribosómico , Nodaviridae/genética , Proteínas Virales/genética , Virión/genética , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Datos de Secuencia Molecular , Nodaviridae/metabolismo , Biosíntesis de Proteínas , Alineación de Secuencia , Proteínas Virales/metabolismo , Virión/metabolismo
9.
Virology ; 448: 255-64, 2014 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-24314656

RESUMEN

The discoveries of Orsay, Santeuil and Le Blanc viruses, three viruses infecting either Caenorhabditis elegans or its relative Caenorhabditis briggsae, enable the study of virus-host interactions using natural pathogens of these two well-established model organisms. We characterized the tissue tropism of infection in Caenorhabditis nematodes by these viruses. Using immunofluorescence assays targeting proteins from each of the viruses, and in situ hybridization, we demonstrate viral proteins and RNAs localize to intestinal cells in larval stage Caenorhabditis nematodes. Viral proteins were detected in one to six of the 20 intestinal cells present in Caenorhabditis nematodes. In Orsay virus-infected C. elegans, viral proteins were detected as early as 6h post-infection. The RNA-dependent RNA polymerase and capsid proteins of Orsay virus exhibited different subcellular localization patterns. Collectively, these observations provide the first experimental insights into viral protein expression in any nematode host, and broaden our understanding of viral infection in Caenorhabditis nematodes.


Asunto(s)
Caenorhabditis elegans/virología , Fenómenos Fisiológicos de los Virus , Virus/aislamiento & purificación , Animales , Intestinos/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Tropismo Viral , Virus/genética , Virus/crecimiento & desarrollo
10.
Bioinformatics ; 28(22): 2922-9, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23044542

RESUMEN

MOTIVATION: Current methods in diagnostic microbiology typically focus on the detection of a single genomic locus or protein in a candidate agent. The presence of the entire microbe is then inferred from this isolated result. Problematically, the presence of recombination in microbial genomes would go undetected unless other genomic loci or protein components were specifically assayed. Microarrays lend themselves well to the detection of multiple loci from a given microbe; furthermore, the inherent nature of microarrays facilitates highly parallel interrogation of multiple microbes. However, none of the existing methods for analyzing diagnostic microarray data has the capacity to specifically identify recombinant microbes. In previous work, we developed a novel algorithm, VIPR, for analyzing diagnostic microarray data. RESULTS: We have expanded upon our previous implementation of VIPR by incorporating a hidden Markov model (HMM) to detect recombinant genomes. We trained our HMM on a set of non-recombinant parental viruses and applied our method to 11 recombinant alphaviruses and 4 recombinant flaviviruses hybridized to a diagnostic microarray in order to evaluate performance of the HMM. VIPR HMM correctly identified 95% of the 62 inter-species recombination breakpoints in the validation set and only two false-positive breakpoints were predicted. This study represents the first description and validation of an algorithm capable of detecting recombinant viruses based on diagnostic microarray hybridization patterns. AVAILABILITY: VIPR HMM is freely available for academic use and can be downloaded from http://ibridgenetwork.org/wustl/vipr. CONTACT: davewang@borcim.wustl.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Alphavirus/aislamiento & purificación , Flaviviridae/aislamiento & purificación , Cadenas de Markov , Hibridación de Ácido Nucleico , Recombinación Genética , Alphavirus/genética , Animales , Chlorocebus aethiops , Flaviviridae/genética , Genómica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...