Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO Mol Med ; 13(12): e14599, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34747138

RESUMEN

WW domain-containing oxidoreductase (WWOX) is an emerging neural gene-regulating homeostasis of the central nervous system. Germline biallelic mutations in WWOX cause WWOX-related epileptic encephalopathy (WOREE) syndrome and spinocerebellar ataxia and autosomal recessive 12 (SCAR12), two devastating neurodevelopmental disorders with highly heterogenous clinical outcomes, the most common being severe epileptic encephalopathy and profound global developmental delay. We recently demonstrated that neuronal ablation of murine Wwox recapitulates phenotypes of Wwox-null mice leading to intractable epilepsy, hypomyelination, and postnatal lethality. Here, we designed and produced an adeno-associated viral vector (AAV9) harboring murine Wwox or human WWOX cDNA and driven by the human neuronal Synapsin I promoter (AAV-SynI-WWOX). Testing the efficacy of AAV-SynI-WWOX delivery in Wwox-null mice demonstrated that specific neuronal restoration of WWOX expression rescued brain hyperexcitability and seizures, hypoglycemia, myelination deficits, and the premature lethality and behavioral deficits of Wwox-null mice. These findings provide a proof-of-concept for WWOX gene therapy as a promising approach to curing children with WOREE and SCAR12.


Asunto(s)
Encefalopatías , Animales , Encéfalo , Terapia Genética , Ratones , Neuronas , Fenotipo , Oxidorreductasa que Contiene Dominios WW/genética
2.
Neurobiol Dis ; 160: 105529, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34634460

RESUMEN

Loss of function mutations of the WW domain-containing oxidoreductase (WWOX) gene are associated with severe and fatal drug-resistant pediatric epileptic encephalopathy. Epileptic seizures are typically characterized by neuronal hyperexcitability; however, the specific contribution of WWOX to that hyperexcitability has yet to be investigated. Using a mouse model of neuronal Wwox-deletion that exhibit spontaneous seizures, in vitro whole-cell and field potential electrophysiological characterization identified spontaneous bursting activity in the neocortex, a marker of the underlying network hyperexcitability. Spectral analysis of the neocortical bursting events highlighted increased phase-amplitude coupling, and a propagation from layer II/III to layer V. These bursts were NMDAR and gap junction dependent. In layer II/III pyramidal neurons, Wwox knockout mice demonstrated elevated amplitude of excitatory post-synaptic currents, whereas the frequency and amplitude of inhibitory post-synaptic currents were reduced, as compared to heterozygote and wild-type littermate controls. Furthermore, these neurons were depolarized and demonstrated increased action potential frequency, sag current, and post-inhibitory rebound. These findings suggest WWOX plays an essential role in balancing neocortical excitability and provide insight towards developing therapeutics for those suffering from WWOX disorders.


Asunto(s)
Potenciales de Acción/fisiología , Epilepsia/fisiopatología , Neocórtex/fisiopatología , Células Piramidales/fisiología , Oxidorreductasa que Contiene Dominios WW/genética , Animales , Epilepsia/genética , Ratones , Ratones Noqueados
3.
EMBO Mol Med ; 13(8): e13610, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34268881

RESUMEN

Developmental and epileptic encephalopathies (DEE) are a group of disorders associated with intractable seizures, brain development, and functional abnormalities, and in some cases, premature death. Pathogenic human germline biallelic mutations in tumor suppressor WW domain-containing oxidoreductase (WWOX) are associated with a relatively mild autosomal recessive spinocerebellar ataxia-12 (SCAR12) and a more severe early infantile WWOX-related epileptic encephalopathy (WOREE). In this study, we generated an in vitro model for DEEs, using the devastating WOREE syndrome as a prototype, by establishing brain organoids from CRISPR-engineered human ES cells and from patient-derived iPSCs. Using these models, we discovered dramatic cellular and molecular CNS abnormalities, including neural population changes, cortical differentiation malfunctions, and Wnt pathway and DNA damage response impairment. Furthermore, we provide a proof of concept that ectopic WWOX expression could potentially rescue these phenotypes. Our findings underscore the utility of modeling childhood epileptic encephalopathies using brain organoids and their use as a unique platform to test possible therapeutic intervention strategies.


Asunto(s)
Encefalopatías , Espasmos Infantiles , Encéfalo , Niño , Humanos , Mutación , Organoides
4.
Brain ; 144(10): 3061-3077, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-33914858

RESUMEN

WWOX-related epileptic encephalopathy (WOREE) syndrome caused by human germline bi-allelic mutations in WWOX is a neurodevelopmental disorder characterized by intractable epilepsy, severe developmental delay, ataxia and premature death at the age of 2-4 years. The underlying mechanisms of WWOX actions are poorly understood. In the current study, we show that specific neuronal deletion of murine Wwox produces phenotypes typical of the Wwox-null mutation leading to brain hyperexcitability, intractable epilepsy, ataxia and postnatal lethality. A significant decrease in transcript levels of genes involved in myelination was observed in mouse cortex and hippocampus. Wwox-mutant mice exhibited reduced maturation of oligodendrocytes, reduced myelinated axons and impaired axonal conductivity. Brain hyperexcitability and hypomyelination were also revealed in human brain organoids with a WWOX deletion. These findings provide cellular and molecular evidence for myelination defects and hyperexcitability in the WOREE syndrome linked to neuronal function of WWOX.


Asunto(s)
Epilepsia/genética , Eliminación de Gen , Vaina de Mielina/genética , Neuronas/fisiología , Oxidorreductasa que Contiene Dominios WW/deficiencia , Oxidorreductasa que Contiene Dominios WW/genética , Animales , Encéfalo/patología , Técnicas de Cocultivo , Epilepsia/patología , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Vaina de Mielina/patología , Neuronas/patología , Organoides , Oxidorreductasa que Contiene Dominios WW/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...