Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Res Insect Sci ; 6: 100093, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220234

RESUMEN

Due to the increasing pressures on bees, many beekeepers currently wish to move their managed livestock of Apis mellifera into little disturbed ecosystems such as protected natural areas. This may, however, exert detrimental competitive effects upon local wild pollinators. While it appears critical for land managers to get an adequate knowledge of this issue for effective wildlife conservation schemes, the frequency of this competition is not clear to date. Based on a systematic literature review of 96 studies, we assessed the frequency of exploitative competition between honey bees and wild pollinators. We found that 78% of the studies highlighted exploitative competition from honey bees to wild pollinators. Importantly, these studies have mostly explored competition with wild bees, while only 18% of them considered other pollinator taxa such as ants, beetles, bugs, butterflies, flies, moths, and wasps. The integration of non-bee pollinators into scientific studies and conservation plans is urgently required as they are critical for the pollination of many wild plants and crops. Interestingly, we found that a majority (88%) of these studies considering also non-bee pollinators report evidence of competition. Thus, neglecting non-bee pollinators could imply an underestimation of competition risks from honey bees. More inclusive work is needed to estimate the risks of competition in its entirety, but also to apprehend the context-dependency of competition so as to properly inform wildlife conservation schemes.

2.
Heliyon ; 10(14): e34390, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39108870

RESUMEN

High winter mortality of honey bees (Apis mellifera) has been observed in temperate regions over the past 30 years. Several biotic and abiotic stressors associated with winter colony losses have been identified, but the mechanisms and interactions underlying their effects remain unclear. We reviewed the effects of stressors on key overwintering biological traits, distinguishing between individual and colony traits. We found that disturbances at the level of individual traits can be amplified when transmitted to colony traits. By analyzing these cascading effects, we propose a concept of a feedback loop mechanism of winter mortality. We found that population size, social thermoregulation and honey reserve are integrative traits and can predict overwintering failure. Furthermore, we identified social thermoregulation as a good candidate for an early warning indicator. We therefore discuss existing tools for monitoring hive temperature to help mitigate the current high winter mortality of honey bees and support the sustainability of beekeeping.

3.
Sci Total Environ ; 950: 175309, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39111415

RESUMEN

Landscape simplification and the loss of semi-natural habitats are identified as important drivers of insect pollinator decline in farmlands, by disrupting the availability of floral resources and facilitating the occurrence of food shortages. Food shortages can lead to accelerated behavioral maturation in honey bees, with potential consequences for colony survival. However, little is known about the magnitude of behavioral maturation mediated by to food shortage under real field conditions, and whether it could be mitigated by the presence of semi-natural habitats. Here, we monitored the lifespan (LSP), age at first exit (AFE), foraging tenure, and foraging intensity of 1035 honey bees along a landscape gradient of semi-natural habitats in farmlands. We found a clear acceleration of behavioral maturation of bees during the food shortage season, with precocity in AFE between 6 and 10 days earlier and reduced LSP by 5 to 9 days, with no effect on foraging tenure or foraging intensity. We also found that higher proportions of semi-natural habitats mitigated behavioral maturation of bees by up to 6 days. Beyond the direct effects on adult bees, we found no delayed effect of larval feeding status on adult life-history traits or foraging behavior. Nevertheless, our results strongly advocate the implementation of policies aimed at increasing the coverage of semi-natural environments (e.g., grasslands, forests, hedgerows) in intensive agricultural landscapes to support honey bee survival and pollinator conservation.


Asunto(s)
Ecosistema , Abejas/fisiología , Animales , Polinización , Granjas , Agricultura/métodos , Conducta Alimentaria
5.
Sci Rep ; 14(1): 10079, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698037

RESUMEN

Over the last quarter century, increasing honey bee colony losses motivated standardized large-scale surveys of managed honey bees (Apis mellifera), particularly in Europe and the United States. Here we present the first large-scale standardized survey of colony losses of managed honey bees and stingless bees across Latin America. Overall, 1736 beekeepers and 165 meliponiculturists participated in the 2-year survey (2016-2017 and 2017-2018). On average, 30.4% of honey bee colonies and 39.6% of stingless bee colonies were lost per year across the region. Summer losses were higher than winter losses in stingless bees (30.9% and 22.2%, respectively) but not in honey bees (18.8% and 20.6%, respectively). Colony loss increased with operation size during the summer in both honey bees and stingless bees and decreased with operation size during the winter in stingless bees. Furthermore, losses differed significantly between countries and across years for both beekeepers and meliponiculturists. Overall, winter losses of honey bee colonies in Latin America (20.6%) position this region between Europe (12.5%) and the United States (40.4%). These results highlight the magnitude of bee colony losses occurring in the region and suggest difficulties in maintaining overall colony health and economic survival for beekeepers and meliponiculturists.


Asunto(s)
Apicultura , Estaciones del Año , Animales , Abejas/fisiología , América Latina
6.
PLoS One ; 19(5): e0302907, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753826

RESUMEN

Honey bees (Apis mellifera) are exposed to multiple stressors such as pesticides, lack of forage, and diseases. It is therefore a long-standing aim to develop robust and meaningful indicators of bee vitality to assist beekeepers While established indicators often focus on expected colony winter mortality based on adult bee abundance and honey reserves at the beginning of the winter, it would be useful to have indicators that allow detection of stress effects earlier in the year to allow for adaptive management. We used the established honey bee simulation model BEEHAVE to explore the potential of different indicators such as population size, number of capped brood cells, flight activity, abundance of Varroa mites, honey stores and a brood-bee ratio. We implemented two types of stressors in our simulations: 1) parasite pressure, i.e. sub-optimal Varroa treatment by the beekeeper (hereafter referred as Biotic stress) and 2) temporal forage gaps in spring and autumn (hereafter referred as Environmental stress). Neither stressor type could be detected by bee abundance or honey reserves at the end of the first year. However, all response variables used in this study did reveal early warning signals during the course of the year. The most reliable and useful measures seem to be related to brood and the abundance of Varroa mites at the end of the year. However, while in the model we have full access to time series of variables from stressed and unstressed colonies, knowledge of these variables in the field is challenging. We discuss how our findings can nevertheless be used to develop practical early warning indicators. As a next step in the interactive development of such indicators we suggest empirical studies on the importance of the number of capped brood cells at certain times of the year on bee population vitality.


Asunto(s)
Varroidae , Abejas/parasitología , Abejas/fisiología , Animales , Estaciones del Año , Miel , Simulación por Computador , Colapso de Colonias , Densidad de Población , Estrés Fisiológico , Apicultura
7.
Environ Toxicol Chem ; 43(6): 1320-1331, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38661473

RESUMEN

Apis mellifera was used as a model species for ecotoxicological testing. In the present study, we tested the effects of acetone (0.1% in feed), a solvent commonly used to dissolve pesticides, on bees exposed at different developmental stages (larval and/or adult). Moreover, we explored the potential effect of in vitro larval rearing, a commonly used technique for accurately monitoring worker exposure at the larval stage, by combining acetone exposure and treatment conditions (in vitro larval rearing vs. in vivo larval rearing). We then analyzed the life-history traits of the experimental bees using radio frequency identification technology over three sessions (May, June, and August) to assess the potential seasonal dependence of the solvent effects. Our results highlight the substantial influence of in vitro larval rearing on the life cycle of bees, with a 47.7% decrease in life span, a decrease of 0.9 days in the age at first exit, an increase of 57.3% in the loss rate at first exit, and a decrease of 40.6% in foraging tenure. We did not observe any effect of exposure to acetone at the larval stage on the capacities of bees reared in vitro. Conversely, acetone exposure at the adult stage reduced the bee life span by 21.8% to 60%, decreased the age at first exit by 1.12 to 4.34 days, and reduced the foraging tenure by 30% to 37.7%. Interestingly, we found a significant effect of season on acetone exposure, suggesting that interference with the life-history traits of honey bees is dependent on season. These findings suggest improved integration of long-term monitoring for assessing sublethal responses in bees following exposure to chemicals during both the larval and adult stages. Environ Toxicol Chem 2024;43:1320-1331. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Acetona , Ecotoxicología , Larva , Animales , Abejas/efectos de los fármacos , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Acetona/toxicidad , Plaguicidas/toxicidad , Estadios del Ciclo de Vida/efectos de los fármacos , Solventes/toxicidad , Contaminantes Ambientales/toxicidad , Rasgos de la Historia de Vida
8.
Glob Chang Biol ; 30(3): e17219, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38450832

RESUMEN

The Western honey bee Apis mellifera is a managed species that provides diverse hive products and contributing to wild plant pollination, as well as being a critical component of crop pollination systems worldwide. High mortality rates have been reported in different continents attributed to different factors, including pesticides, pests, diseases, and lack of floral resources. Furthermore, climate change has been identified as a potential driver negatively impacting pollinators, but it is still unclear how it could affect honey bee populations. In this context, we carried out a systematic review to synthesize the effects of climate change on honey bees and beekeeping activities. A total of 90 articles were identified, providing insight into potential impacts (negative, neutral, and positive) on honey bees and beekeeping. Interest in climate change's impact on honey bees has increased in the last decade, with studies mainly focusing on honey bee individuals, using empirical and experimental approaches, and performed at short-spatial (<10 km) and temporal (<5 years) scales. Moreover, environmental analyses were mainly based on short-term data (weather) and concentrated on only a few countries. Environmental variables such as temperature, precipitation, and wind were widely studied and had generalized negative effects on different biological and ecological aspects of honey bees. Food reserves, plant-pollinator networks, mortality, gene expression, and metabolism were negatively impacted. Knowledge gaps included a lack of studies at the apiary and beekeeper level, a limited number of predictive and perception studies, poor representation of large-spatial and mid-term scales, a lack of climate analysis, and a poor understanding of the potential impacts of pests and diseases. Finally, climate change's impacts on global beekeeping are still an emergent issue. This is mainly due to their diverse effects on honey bees and the potential necessity of implementing adaptation measures to sustain this activity under complex environmental scenarios.


La abeja occidental Apis mellifera es una especie manejada que proporciona diversos productos de la colmena y servicios de polinización, los cuales son cruciales para plantas silvestres y cultivos en todo el mundo. En distintos continentes se han registrado altas tasas de mortalidad, las cuales son atribuidas a diversos factores, como el uso de pesticidas, plagas, enfermedades y falta de recursos florales. Además, el cambio climático ha sido identificado como un potencial factor que afecta negativamente a los polinizadores, pero aún no está claro cómo podría afectar a las poblaciones de abejas melíferas. En este contexto, realizamos una revisión sistemática de la literatura disponible para sintetizar los efectos del cambio climático en las abejas melíferas y las actividades apícolas. En total, se identificaron 90 artículos que proporcionaron información sobre los posibles efectos (negativos, neutros y positivos) en las abejas melíferas y la apicultura. El interés por el impacto del cambio climático en las abejas melíferas ha aumentado en la última década, con estudios centrados principalmente en individuos de abejas melíferas, utilizando enfoques empíricos y experimentales y realizados a escalas espaciales (<10 km) y temporales (<5 años) cortas. Además, los análisis ambientales fueron basaron principalmente en datos a corto plazo (meteorológicos) y se concentraron sólo en algunos países. Variables ambientales como la temperatura, las precipitaciones y el viento fueron ampliamente estudiadas y tuvieron efectos negativos generalizados sobre distintos aspectos biológicos y ecológicos de las abejas melíferas. Además, las reservas alimenticias, las interacciones planta-polinizador, la mortalidad, la expresión génica y el metabolismo se vieron afectados negativamente. Entre los vacios de conocimiento cabe mencionar la falta de estudios a nivel de colmenar y apicultor, la escasez de estudios de predicción y percepción, la escasa representación de las grandes escalas espaciales y a mediano plazo, el déficit de análisis climáticos y la escasa comprensión de los impactos potenciales de plagas y enfermedades. Por último, las repercusiones del cambio climático en la apicultura mundial siguen siendo un tema emergente, que debe estudiarse en los distintos países. Esto se debe principalmente a sus diversos efectos sobre las abejas melíferas y a la necesidad potencial de aplicar medidas de adaptación para mantener esta actividad crucial en escenarios medioambientales complejos.


Asunto(s)
Apicultura , Plaguicidas , Animales , Abejas , Cambio Climático , Alimentos , Polinización
9.
Curr Biol ; 34(5): 1122-1132.e5, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38309271

RESUMEN

Social insects' nests harbor intruders known as inquilines,1 which are usually related to their hosts.2,3 However, distant non-social inquilines may also show convergences with their hosts,4,5 although the underlying genomic changes remain unclear. We analyzed the genome of the wingless and blind bee louse fly Braula coeca, an inquiline kleptoparasite of the western honey bee, Apis mellifera.6,7 Using large phylogenomic data, we confirmed recent accounts that the bee louse fly is a drosophilid8,9 and showed that it had likely evolved from a sap-breeder ancestor associated with honeydew and scale insects' wax. Unlike many parasites, the bee louse fly genome did not show significant erosion or strict reliance on an endosymbiont, likely due to a relatively recent age of inquilinism. However, we observed a horizontal transfer of a transposon and a striking parallel evolution in a set of gene families between the honey bee and the bee louse fly. Convergences included genes potentially involved in metabolism and immunity and the loss of nearly all bitter-tasting gustatory receptors, in agreement with life in a protective nest and a diet of honey, pollen, and beeswax. Vision and odorant receptor genes also exhibited rapid losses. Only genes whose orthologs in the closely related Drosophila melanogaster respond to honey bee pheromone components or floral aroma were retained, whereas the losses included orthologous receptors responsive to the anti-ovarian honey bee queen pheromones. Hence, deep genomic convergences can underlie major phenotypic transitions during the evolution of inquilinism between non-social parasites and their social hosts.


Asunto(s)
Drosophila , Phthiraptera , Abejas/genética , Animales , Drosophila/genética , Drosophila melanogaster/genética , Phthiraptera/genética , Receptores de Superficie Celular/genética , Genes de Insecto , Feromonas
10.
Insects ; 14(11)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37999076

RESUMEN

Pollination services provided by a diversity of pollinators are critical in agriculture because they enhance the yield of many crops. However, few studies have assessed pollination services in urban agricultural systems. We performed flower-visitor observations and pollination experiments on strawberries (Fragaria × ananassa) in an urban area near Paris, France, in order to assess the effects of (i) insect-mediated pollination service and (ii) potential pollination deficit on fruit set, seed set, and fruit quality (size, weight, and malformation). Flower-visitor observations revealed that the pollinator community solely comprised unmanaged pollinators, despite the presence of beehives in the surrounding landscape. Based on the pollination experiments, we found that the pollination service mediated by wild insects improved the fruit size as a qualitative value of production, but not the fruit set. We also found no evidence of pollination deficit in our urban environment. These results suggest that the local community of wild urban pollinators is able to support strawberry crop production and thus plays an important role in providing high-quality, local, and sustainable crops in urban areas.

11.
Sci Total Environ ; 898: 165576, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37467993

RESUMEN

Biological invasions have ecological impacts worldwide with potential massive economic costs. Among other ecosystem services such as nitrogen cycle, carbon sequestration and primary production, invasive alien species are particularly known to impact pollination. By predating honey bees (Apis mellifera), the invasive Yellow-legged hornet (Vespa velutina nigrithorax) increases the mortality risk of European bee colonies; however, little is known about its economic costs. We developed an analytic process combining large-scale field data, niche modelling techniques and agent-based models to spatially assess the ecological and economic impacts of the Yellow-legged hornet on honey bees and beekeeping in France. In particular, we estimated (i) the hornet-related risk of bee colony mortality, (ii) the economic cost of colony loss for beekeepers and (iii) the economic impact of livestock replacement compared to honey revenues at regional and national scales. We estimated an overall density of 1.08 hornet nest/km2 in France, based on the field record of 1260 nests over a searched area of 28,348 km2. However, this predator density was heterogeneously spread out across the country as well as the distribution of managed honey bee colonies. Overall, this hornet-related risk of bee colony mortality could reach up to 29.2 % of the beekeepers' livestock at national scale each year in high predation scenario. This national cost could reach as much as € 30.8 million per year due to colony loss, which represents for beekeepers an economic impact of livestock replacement of 26.6 % of honey revenues. Our results suggest non-negligible ecological and economic impacts of the invasive Yellow-legged hornet on honey bees and beekeeping activities. Moreover, this study meets the urgent need for more numerous and accurate economic estimations, necessary to calculate the impact of biological invasions on biodiversity and human goods, with a view to enhance policies of biodiversity conservation.


Asunto(s)
Abejas , Avispas , Animales , Biodiversidad , Ecosistema , Francia , Especies Introducidas
12.
Ecol Evol ; 13(3): e9902, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37006889

RESUMEN

Automated 3D image-based tracking systems are new and promising devices to investigate the foraging behavior of flying animals with great accuracy and precision. 3D analyses can provide accurate assessments of flight performance in regard to speed, curvature, and hovering. However, there have been few applications of this technology in ecology, particularly for insects. We used this technology to analyze the behavioral interactions between the Western honey bee Apis mellifera and its invasive predator the Asian hornet, Vespa velutina nigrithorax. We investigated whether predation success could be affected by flight speed, flight curvature, and hovering of the Asian hornet and honey bees in front of one beehive. We recorded a total of 603,259 flight trajectories and 5175 predator-prey flight interactions leading to 126 successful predation events, representing 2.4% predation success. Flight speeds of hornets in front of hive entrances were much lower than that of their bee prey; in contrast to hovering capacity, while curvature range overlapped between the two species. There were large differences in speed, curvature, and hovering between the exit and entrance flights of honey bees. Interestingly, we found hornet density affected flight performance of both honey bees and hornets. Higher hornet density led to a decrease in the speed of honey bees leaving the hive, and an increase in the speed of honey bees entering the hive, together with more curved flight trajectories. These effects suggest some predator avoidance behavior by the bees. Higher honey bee flight curvature resulted in lower hornet predation success. Results showed an increase in predation success when hornet number increased up to 8 individuals, above which predation success decreased, likely due to competition among predators. Although based on a single colony, this study reveals interesting outcomes derived from the use of automated 3D tracking to derive accurate measures of individual behavior and behavioral interactions among flying species.

13.
Trends Ecol Evol ; 38(2): 196-205, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36503679

RESUMEN

Pollinators are critical for food security; however, their contribution to the pollination of locally important crops is still unclear, especially for non-bee pollinators. We reviewed the diversity, conservation status, and role of bee and non-bee pollinators in 83 different crops described either as important for the global food market or of local importance. Bees are the most commonly recorded crop floral visitors. However, non-bee pollinators are frequently recorded visitors to crops of local importance. Non-bee pollinators in tropical ecosystems include nocturnal insects, bats, and birds. Importantly, nocturnal pollinators are neglected in current diurnal-oriented research and are experiencing declines. The integration of non-bee pollinators into scientific studies and conservation agenda is urgently required for more sustainable agriculture and safeguarding food security for both globally and locally important crops.


Asunto(s)
Ecosistema , Insectos , Animales , Abejas , Productos Agrícolas , Agricultura , Polinización , Seguridad Alimentaria
14.
Ecology ; 103(7): e3712, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35363383

RESUMEN

Environmental gradients generate and maintain biodiversity on Earth. Mountain slopes are among the most pronounced terrestrial environmental gradients, and the elevational structure of species and their interactions can provide unique insight into the processes that govern community assembly and function in mountain ecosystems. We recorded bumble bee-flower interactions over 3 years along a 1400-m elevational gradient in the German Alps. Using nonlinear modeling techniques, we analyzed elevational patterns at the levels of abundance, species richness, species ß-diversity, and interaction ß-diversity. Though floral richness exhibited a midelevation peak, bumble bee richness increased with elevation before leveling off at the highest sites, demonstrating the exceptional adaptation of these bees to cold temperatures and short growing seasons. In terms of abundance, though, bumble bees exhibited divergent species-level responses to elevation, with a clear separation between species preferring low versus high elevations. Overall interaction ß-diversity was mainly caused by strong turnover in the floral community, which exhibited a well-defined threshold of ß-diversity rate at the tree line ecotone. Interaction ß-diversity increased sharply at the upper extreme of the elevation gradient (1800-2000 m), an interval over which we also saw steep decline in floral richness and abundance. Turnover of bumble bees along the elevation gradient was modest, with the highest rate of ß-diversity occurring over the interval from low- to mid-elevation sites. The contrast between the relative robustness bumble bee communities and sensitivity of plant communities to the elevational gradient in our study suggests that the strongest effects of climate change on mountain bumble bees may be indirect effects mediated by the responses of their floral hosts, though bumble bee species that specialize in high-elevation habitats may also experience significant direct effects of warming.


Asunto(s)
Abejas , Ecosistema , Plantas , Polinización , Altitud , Animales , Biodiversidad , Cambio Climático , Flores , Plantas/clasificación
15.
Sci Total Environ ; 805: 150351, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34818794

RESUMEN

Pesticide risk-assessment guidelines for honeybees (Apis mellifera) generally require determining the acute toxicity of a chemical over the short-term through fix-duration tests. However, potential long-lasting or delayed effects resulting from an acute exposure (e.g. a single dose) are often overlooked, although the modification of a developmental process may have life-long consequences. To investigate this question, we exposed young honeybee workers to a single sublethal field-realistic dose of a neurotoxic pesticide, sulfoxaflor, at one of two amounts (16 or 60 ng), at the moment when they initiated orientation flights (preceding foraging activity). We then tracked in the field their flight activity and lifespan with automated life-long monitoring devices. Both amounts of sulfoxaflor administered reduced the total number of flights but did not affect bee survival and flight duration. When looking at the time series of flight activity, effects were not immediate but delayed until foraging activity with a decrease in the daily number of foraging flights and consequently in their total number (24 and 33% less for the 16 and 60 ng doses, respectively). The results of our study therefore blur the general assumption in honeybee toxicology that acute exposure results in immediate and rapid effects and call for long-term recording and/or time-to-effect measurements, even upon exposure to a single dose of pesticide.


Asunto(s)
Insecticidas , Plaguicidas , Animales , Abejas , Insecticidas/toxicidad , Plaguicidas/toxicidad , Piridinas , Compuestos de Azufre
16.
Curr Opin Insect Sci ; 50: 100866, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34971783

RESUMEN

Biotic pollination and pest control are two critical insect-mediated ecosystem services that support crop production. Although management of both services is usually treated separately, the new paradigm of Integrated Pest and Pollinator Management (IPPM) suggests synergetic benefits by considering them together. We reviewed the management practices in two major tropical perennial crops: cocoa and coffee, to assess IPPM applications under the tropics. We found potential synergies and antagonisms among crop pest and pollination management, however, very few studies considered these interactions. Interestingly, we also found management practices focusing mainly on a single service mediated by insects although species can show multiple ecological functions as pests, natural enemies, or pollinators. The tropics represent a promising area for the implementation of IPPM and future research should address this concept to move towards a more sustainable agriculture.


Asunto(s)
Ecosistema , Polinización , Agricultura , Animales , Productos Agrícolas , Insectos
17.
Ecol Evol ; 11(12): 7834-7849, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34188855

RESUMEN

Temperature and photoperiod are important Zeitgebers for plants and pollinators to synchronize growth and reproduction with suitable environmental conditions and their mutualistic interaction partners. Global warming can disturb this temporal synchronization since interacting species may respond differently to new combinations of photoperiod and temperature under future climates, but experimental studies on the potential phenological responses of plants and pollinators are lacking. We simulated current and future combinations of temperature and photoperiod to assess effects on the overwintering and spring phenology of an early flowering plant species (Crocus sieberi) and the Western honey bee (Apis mellifera). We could show that increased mean temperatures in winter and early spring advanced the flowering phenology of C. sieberi and intensified brood rearing activity of A. mellifera but did not advance their brood rearing activity. Flowering phenology of C. sieberi also relied on photoperiod, while brood rearing activity of A. mellifera did not. The results confirm that increases in temperature can induce changes in phenological responses and suggest that photoperiod can also play a critical role in these responses, with currently unknown consequences for real-world ecosystems in a warming climate.

18.
Landsc Ecol ; 36(1): 281-295, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33505122

RESUMEN

CONTEXT: Global pollinator decline has motivated much research to understand the underlying mechanisms. Among the multiple pressures threatening pollinators, habitat loss has been suggested as a key-contributing factor. While habitat destruction is often associated with immediate negative impacts, pollinators can also exhibit delayed responses over time. OBJECTIVES: We used a trait-based approach to investigate how past and current land use at both local and landscape levels impact plant and wild bee communities in grasslands through a functional lens. METHODS: We measured flower and bee morphological traits that mediate plant-bee trophic linkage in 66 grasslands. Using an extensive database of 20 years of land-use records, we tested the legacy effects of the landscape-level conversion of grassland to crop on flower and bee trait diversity. RESULTS: Land-use history was a strong driver of flower and bee trait diversity in grasslands. Particularly, bee trait diversity was lower in landscapes where much of the land was converted from grassland to crop long ago. Bee trait diversity was also strongly driven by plant trait diversity computed with flower traits. However, this relationship was not observed in landscapes with a long history of grassland-to-crop conversion. The effects of land-use history on bee communities were as strong as those of current land use, such as grassland or mass-flowering crop cover in the landscape. CONCLUSIONS: Habitat loss that occurred long ago in agricultural landscapes alters the relationship between plants and bees over time. The retention of permanent grassland sanctuaries within intensive agricultural landscapes can offset bee decline.

19.
J Anim Ecol ; 89(8): 1860-1871, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32419193

RESUMEN

Measuring time-activity budgets over the complete individual life span is now possible for many animals with the recent advances of life-long individual monitoring devices. Although analyses of changes in the patterns of time-activity budgets have revealed ontogenetic shifts in birds or mammals, no such technique has been applied to date on insects. We tested an automated breakpoint-based procedure to detect, assess and quantify shifts in the temporal pattern of the flight activities in honeybees. We assumed that the learning and foraging stages of honeybees will differ in several respects, to detect the age at onset of foraging (AOF). Using an extensive dataset covering the life-long monitoring of 1,167 individuals, we compared the AOF outputs with the more conventional approaches based on arbitrary thresholds. We further evaluated the robustness of the different methods comparing the foraging time-activity budget allocations between the presumed foragers and confirmed foragers. We revealed a clear-cut learning-foraging ontogenetic shift that differs in duration, frequency and time of occurrence of flights. Although AOF appeared to be highly plastic among bees, the breakpoint-based procedure seems better capable to detect it than arbitrary threshold-based methods that are unable to deal with inter-individual variation. We developed the aof r-package including a broad range of examples with both simulated and empirical datasets to illustrate the simplicity of use of the procedure. This simple procedure is generic enough to be derived from any individual life-long monitoring devices recording the time-activity budgets, and could propose new ecological applications of bio-logging to detect ontogenetic shifts in the behaviour of central-place foragers.


Asunto(s)
Conducta Alimentaria , Longevidad , Animales , Abejas
20.
J Environ Manage ; 257: 109983, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31989960

RESUMEN

Stakeholders are critical environmental managers in human-dominated landscapes. In some contexts, stakeholders can be forced to personally act following their own observations and risk perception instead of science recommendation. In particular, biological invasions need rapid control actions to reduce potential socio-ecological impacts, while science-based risk assessments are rather complex and time-delayed. Although they can lead to important detrimental effects on biodiversity, potential time-delayed disconnections between stakeholders' action and science recommendations are rarely studied. Using the case study of western European beekeepers controlling the invasive Asian hornet Vespa velutina nigrithorax for its suspected impact on honey bee colonies, we analysed mechanisms underlying personal actions of stakeholders and how they evolved in science disconnection. Personal actions of stakeholders were causal-effect linked with their risk observation but disconnected to time-delayed science predictions and recommendations. Unfortunately, these science-disconnected actions also led to dramatic impacts on numerous species of the local entomofauna. These results highlight the need to improve mutual risk communication between science and action in the early-stages of management plans to improve the sustainably of stakeholders' practices.


Asunto(s)
Especies Introducidas , Avispas , Animales , Abejas , Biodiversidad , Humanos , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...