Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Small ; : e2308814, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38282203

RESUMEN

There is a recent resurgence of interest in phage therapy (the therapeutic use of bacterial viruses) as an approach to eliminating difficult-to-treat infections. However, existing approaches for therapeutic phage selection and virulence testing are time-consuming, host-dependent, and facing reproducibility issues. Here, this study presents an innovative approach wherein integrated resonant photonic crystal (PhC) cavities in silicon are used as optical nanotweezers for probing and manipulating single bacteria and single virions with low optical power. This study demonstrates that these nanocavities differentiate between a bacterium and a phage without labeling or specific surface bioreceptors. Furthermore, by tailoring the spatial extent of the resonant optical mode in the low-index medium, phage distinction across phenotypically distinct phage families is demonstrated. The work paves the road to the implementation of optical nanotweezers in phage therapy protocols.

3.
Microbiol Mol Biol Rev ; 87(4): e0006323, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37947420

RESUMEN

SUMMARYCommunities of microorganisms (microbiota) are present in all habitats on Earth and are relevant for agriculture, health, and climate. Deciphering the mechanisms that determine microbiota dynamics and functioning within the context of their respective environments or hosts (the microbiomes) is crucially important. However, the sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes poses substantial challenges to advancing our knowledge of these mechanisms. While nucleic acid sequencing technologies can chart microbiota composition with high precision, we mostly lack information about the functional roles and interactions of each strain present in a given microbiome. This limits our ability to predict microbiome function in natural habitats and, in the case of dysfunction or dysbiosis, to redirect microbiomes onto stable paths. Here, we will discuss a systematic approach (dubbed the N+1/N-1 concept) to enable step-by-step dissection of microbiome assembly and functioning, as well as intervention procedures to introduce or eliminate one particular microbial strain at a time. The N+1/N-1 concept is informed by natural invasion events and selects culturable, genetically accessible microbes with well-annotated genomes to chart their proliferation or decline within defined synthetic and/or complex natural microbiota. This approach enables harnessing classical microbiological and diversity approaches, as well as omics tools and mathematical modeling to decipher the mechanisms underlying N+1/N-1 microbiota outcomes. Application of this concept further provides stepping stones and benchmarks for microbiome structure and function analyses and more complex microbiome intervention strategies.


Asunto(s)
Microbiota , Humanos , Microbiota/genética , Disbiosis
4.
Sci Rep ; 13(1): 18204, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875544

RESUMEN

S. aureus is a pathogen that frequently causes severe morbidity and phage therapy is being discussed as an alternative to antibiotics for the treatment of S. aureus infections. In this in vitro and animal study, we demonstrated that the activity of anti-staphylococcal phages is severely impaired in 0.5% plasma or synovial fluid. Despite phage replication in these matrices, lysis of the bacteria was slower than phage propagation, and no reduction of the bacterial population was observed. The inhibition of the phages associated with a reduction in phage adsorption, quantified to 99% at 10% plasma. S. aureus is known to bind multiple coagulation factors, resulting in the formation of aggregates and blood clots that might protect the bacterium from the phages. Here, we show that purified fibrinogen at a sub-physiological concentration of 0.4 mg/ml is sufficient to impair phage activity. In contrast, dissolution of the clots by tissue plasminogen activator (tPA) partially restored phage activity. Consistent with these in vitro findings, phage treatment did not reduce bacterial burdens in a neutropenic mouse S. aureus thigh infection model. In summary, phage treatment of S. aureus infections inside the body may be fundamentally challenging, and more investigation is needed prior to proceeding to in-human trials.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Animales , Ratones , Staphylococcus aureus/fisiología , Activador de Tejido Plasminógeno , Líquido Sinovial , Infecciones Estafilocócicas/terapia , Infecciones Estafilocócicas/microbiología , Fagos de Staphylococcus/fisiología , Antibacterianos
6.
Nat Commun ; 14(1): 3629, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369702

RESUMEN

Bacteriophage therapy has been suggested as an alternative or complementary strategy for the treatment of multidrug resistant (MDR) bacterial infections. Here, we report the favourable clinical evolution of a 41-year-old male patient with a Kartagener syndrome complicated by a life-threatening chronic MDR Pseudomonas aeruginosa infection, who is treated successfully with iterative aerosolized phage treatments specifically directed against the patient's isolate. We follow the longitudinal evolution of both phage and bacterial loads during and after phage administration in respiratory samples. Phage titres in consecutive sputum samples indicate in patient phage replication. Phenotypic analysis and whole genome sequencing of sequential bacterial isolates reveals a clonal, but phenotypically diverse population of hypermutator strains. The MDR phenotype in the collected isolates is multifactorial and mainly due to spontaneous chromosomal mutations. All isolates recovered after phage treatment remain phage susceptible. These results demonstrate that clinically significant improvement is achievable by personalised phage therapy even in the absence of complete eradication of P. aeruginosa lung colonization.


Asunto(s)
Bacteriófagos , Neumonía , Infecciones por Pseudomonas , Masculino , Humanos , Bacteriófagos/genética , Pseudomonas aeruginosa , Pulmón , Farmacorresistencia Bacteriana Múltiple , Infección Persistente , Infecciones por Pseudomonas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
7.
Rev Med Suisse ; 18(804): 2150-2156, 2022 Nov 16.
Artículo en Francés | MEDLINE | ID: mdl-36382975

RESUMEN

The crisis of antibiotic resistance represents a global public health challenge, affecting particularly patients with respiratory infections. The use of (bacterio)phages for the treatment of bacterial infections (phage therapy) seems safe but its effectiveness has not yet been proven by controlled clinical trials. Nevertheless, phage therapy is regaining interest, encouraged by published cases treated successfully with personalized phage combinations as well as significant advances at a preclinical level. Standardized approaches in phage production and treatment administration, as well as future translational studies, are needed to improve our understanding and explore the potential of phage therapy.


La crise de l'antibiorésistance représente un enjeu considérable en santé publique, touchant particulièrement les patients avec des infections respiratoires. L'utilisation des (bactério)phages pour le traitement des infections bactériennes semble sécuritaire mais son efficacité n'a pas encore été formellement démontrée dans des essais cliniques contrôlés. La phagothérapie regagne de l'intérêt comme traitement personnalisé pour les patients qui ne répondent pas aux traitements standards, comme en témoignent les multiples cas publiés ainsi que des découvertes significatives au niveau préclinique. Des approches standardisées concernant la production et l'administration des phages ainsi que des études translationnelles sont nécessaires afin d'améliorer notre compréhension et d'explorer le potentiel de la phagothérapie.


Asunto(s)
Infecciones Bacterianas , Bacteriófagos , Terapia de Fagos , Infecciones del Sistema Respiratorio , Humanos , Infecciones Bacterianas/terapia , Infecciones Bacterianas/microbiología , Infecciones del Sistema Respiratorio/terapia , Farmacorresistencia Microbiana , Antibacterianos/uso terapéutico , Antibacterianos/farmacología
8.
Viruses ; 14(11)2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36366553

RESUMEN

Erwinia amylovora is a quarantine phytopathogenic bacterium that is the causal agent of fire blight, a destructive disease responsible for killing millions of fruit-bearing plants worldwide, including apple, pear, quince, and raspberry. Efficient and sustainable control strategies for this serious bacterial disease are still lacking, and traditional methods are limited to the use of antibiotics and some basic agricultural practices. This study aimed to contribute to the development of a sustainable control strategy through the identification, characterization, and application of bacteriophages (phages) able to control fire blight on pears. Phages isolated from wastewater collected in the Apulia region (southern Italy) were characterized and evaluated as antibacterial agents to treat experimental fire blight caused by E. amylovora. Transmission electron microscopy (TEM) conducted on purified phages (named EP-IT22 for Erwinia phage IT22) showed particles with icosahedral heads of ca. 90 ± 5 nm in length and long contractile tails of 100 ± 10 nm, typical of the Myoviridae family. Whole genome sequencing (WGS), assembly, and analysis of the phage DNA generated a single contig of 174.346 bp representing a complete circular genome composed of 310 open reading frames (ORFs). EP-IT22 was found to be 98.48% identical to the Straboviridae Erwinia phage Cronus (EPC) (GenBank Acc. n° NC_055743) at the nucleotide level. EP-IT22 was found to be resistant to high temperatures (up to 60 °C) and pH values between 4 and 11, and was able to accomplish a complete lytic cycle within one hour. Furthermore, the viability-qPCR and turbidity assays showed that EP-IT22 (MOI = 1) lysed 94% of E. amylovora cells in 20 h. The antibacterial activity of EP-IT22 in planta was evaluated in E. amylovora-inoculated pear plants that remained asymptomatic 40 days post inoculation, similarly to those treated with streptomycin sulphate. This is the first description of the morphological, biological, and molecular features of EP-IT22, highlighting its promising potential for biocontrol of E. amylovora against fire blight disease.


Asunto(s)
Bacteriófagos , Erwinia amylovora , Malus , Erwinia amylovora/genética , Bacteriófagos/genética , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Myoviridae/genética
9.
Eur Respir Rev ; 31(166)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36198417

RESUMEN

Lower respiratory tract infections lead to significant morbidity and mortality. They are increasingly caused by multidrug-resistant pathogens, notably in individuals with cystic fibrosis, hospital-acquired pneumonia and lung transplantation. The use of bacteriophages (phages) to treat bacterial infections is gaining growing attention, with numerous published cases of compassionate treatment over the last few years. Although the use of phages appears safe, the lack of standardisation, the significant heterogeneity of published studies and the paucity of robust efficacy data, alongside regulatory hurdles arising from the existing pharmaceutical legislation, are just some of the challenges phage therapy has to overcome. In this review, we discuss the lessons learned from recent clinical experiences of phage therapy for the treatment of pulmonary infections. We review the key aspects, opportunities and challenges of phage therapy regarding formulations and administration routes, interactions with antibiotics and the immune system, and phage resistance. Building upon the current knowledge base, future pre-clinical studies using emerging technologies and carefully designed clinical trials are expected to enhance our understanding and explore the therapeutic potential of phage therapy.


Asunto(s)
Terapia de Fagos , Neumonía , Bacteriófagos , Humanos , Legislación de Medicamentos , Terapia de Fagos/efectos adversos , Neumonía/terapia
10.
Viruses ; 14(8)2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-36016414

RESUMEN

Background. Recurrent therapeutic failures reported for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infective endocarditis (IE) with vancomycin may be due to poor bactericidal activity. Alternative antibacterial approaches using bacteriophages may overcome this limitation. Objectives. An experimental rat model of MRSA IE (EE) was used to examine the efficacy of vancomycin combined with a 1:1 bacteriophage (phage) cocktail composed of Herelleviridae vB_SauH_2002 and Routreeviridae 66. Methods. Six hours after inoculation with ca. 5 log10 colony forming units (CFU) of MRSA strain AW7, animals were treated with either: (i) saline, (ii) an equimolar two-phage cocktail (bolus of 1 mL followed by a 0.3 mL/h continuous infusion of 10 log10 plaque forming units (PFU)/mL phage suspension), (iii) vancomycin (at a dose mimicking the kinetics in humans of 0.5 g b.i.d.), or (iv) a combination of both. Bacterial loads in vegetations, and phage loads in vegetations, liver, kidney, spleen, and blood, were measured outcomes. Results. Phage cocktail alone was unable to control the growth of strain AW7 in cardiac vegetations. However, when combined with subtherapeutic doses of vancomycin, a statistically significant decrease of ∆4.05 ± 0.94 log10 CFU/g at 24 h compared to placebo was detected (p < 0.001). The administration of vancomycin was found to significantly impact on the local concentrations of phages in the vegetations and in the organs examined. Conclusions. Lytic bacteriophages as an adjunct treatment to the standard of care antibiotics could potentially improve the management of MRSA IE. Further studies are needed to investigate the impact of antibiotics on phage replication in vivo.


Asunto(s)
Bacteriófagos , Endocarditis Bacteriana , Endocarditis , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Endocarditis/tratamiento farmacológico , Endocarditis Bacteriana/tratamiento farmacológico , Endocarditis Bacteriana/microbiología , Pruebas de Sensibilidad Microbiana , Ratas , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Vancomicina/farmacología , Vancomicina/uso terapéutico
11.
PLoS One ; 17(4): e0266928, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35472061

RESUMEN

BACKGROUND: Treatment failure in pneumococcal meningitis due to antibiotic resistance is an increasing clinical challenge and alternatives to antibiotics warrant investigation. Phage-derived endolysins efficiently kill gram-positive bacteria including multi-drug resistant strains, making them attractive therapeutic candidates. The current study assessed the therapeutic potential of the novel endolysin PlyAZ3aT in an infant rat model of ceftriaxone-resistant pneumococcal meningitis. METHODS: Efficacy of PlyAZ3aT was assessed in a randomized, blinded and controlled experimental study in infant Wistar rats. Meningitis was induced by intracisternal infection with 5 x 107 CFU/ml of a ceftriaxone-resistant clinical strain of S. pneumoniae, serotype 19A. Seventeen hours post infection (hpi), animals were randomized into 3 treatment groups and received either (i) placebo (phosphate buffered saline [PBS], n = 8), (ii) 50 mg/kg vancomycin (n = 10) or (iii) 400 mg/kg PlyAZ3aT (n = 8) via intraperitoneal injection. Treatments were repeated after 12 h. Survival at 42 hpi was the primary outcome; bacterial loads in cerebrospinal fluid (CSF) and blood were secondary outcomes. Additionally, pharmacokinetics of PlyAZ3aT in serum and CSF was assessed. RESULTS: PlyAZ3aT did not improve survival compared to PBS, while survival for vancomycin treated animals was 70% which is a significant improvement when compared to PBS or PlyAZ3aT (p<0.05 each). PlyAZ3aT was not able to control the infection, reflected by the inability to reduce bacterial loads in the CSF, whereas Vancomycin sterilized the CSF and within 25 h. Pharmacokinetic studies indicated that PlyAZ3aT did not cross the blood brain barrier (BBB). In support, PlyAZ3aT showed a peak concentration of 785 µg/ml in serum 2 h after intraperitoneal injection but could not be detected in CSF. CONCLUSION: In experimental pneumococcal meningitis, PlyAZ3aT failed to cure the infection due to an inability to reach the CSF. Optimization of the galenic formulation e.g. using liposomes might enable crossing of the BBB and improve treatment efficacy.


Asunto(s)
Meningitis Neumocócica , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Endopeptidasas , Meningitis Neumocócica/microbiología , Distribución Aleatoria , Ratas , Ratas Wistar , Streptococcus pneumoniae , Vancomicina/farmacología
12.
J Am Heart Assoc ; 11(3): e023080, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35043655

RESUMEN

Background The potential of phage therapy for the treatment of endovascular Staphylococcus aureus infections remains to be evaluated. Methods and Results The efficacy of a phage cocktail combining Herelleviridae phage vB_SauH_2002 and Podoviriae phage 66 was evaluated against a methicillin-sensitive S. aureus strain in vitro and in vivo in a rodent model of experimental endocarditis. Six hours after bacterial challenge, animals were treated with (1) the phage cocktail. (2) subtherapeutic flucloxacillin dosage, (3) combination of the phage cocktail and flucloxacillin, or (4) saline. Bacterial loads in cardiac vegetations at 30 hours were the primary outcome. Secondary outcomes were phage loads at 30 hours in cardiac vegetations, blood, spleen, liver, and kidneys. We evaluated phage resistance 30 hours post infection in vegetations of rats under combination treatment. In vitro, phages synergized against S. aureus planktonic cells and the cocktail synergized with flucloxacillin to eradicated biofilms. In infected animals, the phage cocktail achieved bacteriostatic effect. The addition of low-dose flucloxacillin elevated bacterial suppression (∆ of -5.25 log10 colony forming unit/g [CFU/g] versus treatment onset, P<0.0001) and synergism was confirmed (∆ of -2.15 log10 CFU/g versus low-dose flucloxacillin alone, P<0.01). Importantly, 9/12 rats given the combination treatment had sterile vegetations at 30 hours. In vivo phage replication was partially suppressed by the antibiotic and selection of resistance to the Podoviridae component of the phage cocktail occurred. Plasma-mediated inhibition of phage killing activity was observed in vitro. Conclusions Combining phages with a low-dose standard of care antibiotic represents a promising strategy for the treatment of S. aureus infective endocarditis.


Asunto(s)
Bacteriófagos , Endocarditis Bacteriana , Endocarditis , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriófagos/fisiología , Endocarditis/microbiología , Endocarditis Bacteriana/terapia , Floxacilina/farmacología , Floxacilina/uso terapéutico , Ratas , Infecciones Estafilocócicas/terapia , Staphylococcus aureus/fisiología
13.
J Infect Dis ; 225(8): 1452-1459, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33668071

RESUMEN

BACKGROUND: The optimal method for delivering phages in the context of ventilator-associated pneumonia (VAP) is unknown. In the current study, we assessed the utility of aerosolized phages (aerophages) for experimental methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. METHODS: Rats were ventilated for 4 hours before induction of pneumonia. Animals received one of the following: (1) aerophages; (2) intravenous (IV) phages; (3) a combination of IV and aerophages; (4) IV linezolid; or (5) a combination of IV linezolid and aerophages. Phages were administered at 2, 12, 24, 48, and 72 hours, and linezolid was administered at 2, 12, 24, 36, 48, 60, and 72 hours. The primary outcome was survival at 96 hours. Secondary outcomes were bacterial and phage counts in tissues and histopathological scoring of the lungs. RESULTS: Aerophages and IV phages each rescued 50% of animals from severe MRSA pneumonia (P < .01 compared with placebo controls). The combination of aerophages and IV phages rescued 91% of animals, which was higher than either monotherapy (P < .05). Standard-of-care antibiotic linezolid rescued 38% of animals. However, linezolid and aerophages did not synergize in this setting (55% survival). CONCLUSIONS: Aerosolized phage therapy showed potential for the treatment of MRSA pneumonia in an experimental animal model and warrants further investigation for application in humans.


Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Neumonía Estafilocócica , Neumonía Asociada al Ventilador , Animales , Linezolid/uso terapéutico , Neumonía Estafilocócica/microbiología , Neumonía Asociada al Ventilador/tratamiento farmacológico , Ratas
14.
FEMS Microbiol Rev ; 46(1)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34289033

RESUMEN

Like the sword of Damocles, the threat of a post-antibiotic era is hanging over humanity's head. The scientific and medical community is thus reconsidering bacteriophage therapy (BT) as a partial but realistic solution for treatment of difficult-to-eradicate bacterial infections. Here, we summarize the latest developments in clinical BT applications, with a focus on developments in the following areas: (i) pharmacology of bacteriophages of major clinical importance and their synergy with antibiotics; (ii) production of therapeutic phages; and (iii) clinical trials, case studies and case reports in the field. We address regulatory concerns, which are of paramount importance insofar as they dictate the conduct of clinical trials, which are needed for broader BT application. The increasing amount of new available data confirms the particularities of BT as being innovative and highly personalized. The current circumstances suggest that the immediate future of BT may be advanced within the framework of national BT centers in collaboration with competent authorities, which are urged to adopt incisive initiatives originally launched by some national regulatory authorities.


Asunto(s)
Infecciones Bacterianas , Bacteriófagos , Terapia de Fagos , Antibacterianos/uso terapéutico , Infecciones Bacterianas/terapia , Humanos
15.
Antibiotics (Basel) ; 10(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34827242

RESUMEN

Acinetobacter pittii is a species that belong to the Acinetobacter calcoaceticus-baumannii complex, increasingly recognized as major nosocomial bacterial pathogens, often associated with multiple drug-resistances. The capsule surrounding the bacteria represents a main virulence factor, helping cells avoid phage predation and host immunity. Accordingly, a better understanding of the phage infection mechanisms is required to efficiently develop phage therapy against Acinetobacter of different capsular types. Here, we report the isolation of the novel A. pittii-infecting Fri1-like phage vB_Api_3043-K38 (3043-K38) of the Podoviridae morphotype, from sewage samples. Its 41,580 bp linear double-stranded DNA genome harbours 53 open reading frames and 302 bp of terminal repeats. We show that all studied Acinetobacter Fri1-like viruses have highly similar genomes, which differentiate only at the genes coding for tailspike, likely to adapt to different host receptors. The isolated phage 3043-K38 specifically recognizes an untapped Acinetobacter K38 capsule type via a novel tailspike with K38 depolymerase activity. The recombinant K38 depolymerase region of the tailspike (center-end region) forms a thermostable trimer, and quickly degrades capsules. When the K38 depolymerase is applied to the cells, it makes them resistant to phage predation. Interestingly, while K38 depolymerase treatments do not synergize with antibiotics, it makes bacterial cells highly susceptible to the host serum complement. In summary, we characterized a novel phage-encoded K38 depolymerase, which not only advances our understanding of phage-host interactions, but could also be further explored as a new antibacterial agent against drug-resistant Acinetobacter.

16.
Microbiol Resour Announc ; 10(30): e0048921, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34323607

RESUMEN

Pseudomonas aeruginosa is a major pathogen in humans and other animals, frequently harboring mechanisms of resistance to commonly used antimicrobials. Here, we describe the isolation of Pseudomonas bacteriophage Zikora. The full 65,837-bp genome was annotated and demonstrates similarity to Pbunavirus phages, making Zikora a new member of this genus of the Myoviridae family.

17.
J Biol Chem ; 296: 100639, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33838182

RESUMEN

Endolysins are peptidoglycan hydrolases produced at the end of the bacteriophage (phage) replication cycle to lyse the host cell. Endolysins in Gram-positive phages come in a variety of multimodular forms that combine different catalytic and cell wall binding domains. However, the reason why phages adopt endolysins with such complex multidomain architecture is not well understood. In this study, we used the Streptococcus dysgalactiae phage endolysin PlySK1249 as a model to investigate the role of multidomain architecture in phage-induced bacterial lysis and lysis regulation. PlySK1249 consists of an amidase (Ami) domain that lyses bacterial cells, a nonbacteriolytic endopeptidase (CHAP) domain that acts as a dechaining enzyme, and a central LysM cell wall binding domain. We observed that the Ami and CHAP domains synergized for peptidoglycan digestion and bacteriolysis in the native enzyme or when expressed individually and reunified. The CHAP endopeptidase resolved complex polymers of stem-peptides to dimers and helped the Ami domain to digest peptidoglycan to completion. We also found that PlySK1249 was subject to proteolytic cleavage by host cell wall proteases both in vitro and after phage induction. Cleavage disconnected the different domains by hydrolyzing their linker regions, thus hindering their bacteriolytic cooperation and possibly modulating the lytic activity of the enzyme. PlySK1249 cleavage by cell-wall-associated proteases may represent another example of phage adaptation toward the use of existing bacterial regulation mechanism for their own advantage. In addition, understanding more thoroughly the multidomain interplay of PlySK1249 broadens our knowledge on the ideal architecture of therapeutic antibacterial endolysins.


Asunto(s)
Bacteriólisis , Endopeptidasas/química , Endopeptidasas/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Peptidoglicano/metabolismo , Fagos de Streptococcus/enzimología , Streptococcus/crecimiento & desarrollo , Pared Celular , Dominios Proteicos , Streptococcus/virología
18.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918287

RESUMEN

Due to the rapid spread of antibiotic resistance, and the difficulties of treating biofilm-associated infections, alternative treatments for S. aureus infections are urgently needed. We tested the lytic activity of several wild type phages against a panel of 110 S. aureus strains (MRSA/MSSA) composed to reflect the prevalence of S. aureus clonal complexes in human infections. The plaquing host ranges (PHR) of the wild type phages were in the range of 51% to 60%. We also measured what we called the kinetic host range (KHR), i.e., the percentage of strains for which growth in suspension was suppressed for 24 h. The KHR of the wild type phages ranged from 2% to 49%, substantially lower than the PHRs. To improve the KHR and other key pharmaceutical properties, we bred the phages by mixing and propagating cocktails on a subset of S. aureus strains. These bred phages, which we termed evolution-squared (ε2) phages, have broader KHRs up to 64% and increased virulence compared to the ancestors. The ε2-phages with the broadest KHR have genomes intercrossed from up to three different ancestors. We composed a cocktail of three ε2-phages with an overall KHR of 92% and PHR of 96% on 110 S. aureus strains and called it PM-399. PM-399 has a lower propensity to resistance formation than the standard of care antibiotics vancomycin, rifampicin, or their combination, and no resistance was observed in laboratory settings (detection limit: 1 cell in 1011). In summary, ε2-phages and, in particular PM-399, are promising candidates for an alternative treatment of S. aureus infections.

19.
PLoS One ; 16(3): e0248917, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33755710

RESUMEN

The growing number of drug-resistant bacterial infections worldwide is driving renewed interest in phage therapy. Based on the use of a personalized cocktail composed of highly specific bacterial viruses, this therapy relies on a range of tests on agar media to determine the most active phage on a given bacterial target (phage susceptibility testing), or to isolate new lytic phages from an environmental sample (enrichment of phage banks). However, these culture-based techniques are still solely interpreted through direct visual detection of plaques. The main objective of this work is to investigate computer-assisted methods in order to ease and accelerate diagnosis in phage therapy but also to study phage plaque growth kinetics. For this purpose, we designed a custom wide-field lensless imaging device, which allows continuous monitoring over a very large area sensor (3.3 cm2). Here we report bacterial susceptibility to Staphylococcus aureus phage in 3 hr and estimation of infectious titer in 8 hr 20 min. These are much shorter time-to-results than the 12 to 24 hours traditionally needed, since naked eye observation and counting of phage plaques is still the most widely used technique for susceptibility testing prior to phage therapy. Moreover, the continuous monitoring of the samples enables the study of plaque growth kinetics, which enables a deeper understanding of the interaction between phage and bacteria. Finally, thanks to the 4.3 µm resolution, we detect phage-resistant bacterial microcolonies of Klebsiella pneumoniae inside the boundaries of phage plaques and thus show that our prototype is also a suitable device to track phage resistance. Lensless imaging is therefore an all-in-one method that could easily be implemented in cost-effective and compact devices in phage laboratories to help with phage therapy diagnosis.


Asunto(s)
Bacteriófagos/crecimiento & desarrollo , Procesamiento de Imagen Asistido por Computador , Lentes , Bacterias/virología , Cinética , Factores de Tiempo
20.
Pathogens ; 10(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33435575

RESUMEN

Bacterial vaginosis is characterized by an imbalance of the vaginal microbiome and a characteristic biofilm formed on the vaginal epithelium, which is initiated and dominated by Gardnerella bacteria, and is frequently refractory to antibiotic treatment. We investigated endolysins of the type 1,4-beta-N-acetylmuramidase encoded on Gardnerella prophages as an alternative treatment. When recombinantly expressed, these proteins demonstrated strong bactericidal activity against four different Gardnerella species. By domain shuffling, we generated several engineered endolysins with 10-fold higher bactericidal activity than any wild-type enzyme. When tested against a panel of 20 Gardnerella strains, the most active endolysin, called PM-477, showed minimum inhibitory concentrations of 0.13-8 µg/mL. PM-477 had no effect on beneficial lactobacilli or other species of vaginal bacteria. Furthermore, the efficacy of PM-477 was tested by fluorescence in situ hybridization on vaginal samples of fifteen patients with either first time or recurring bacterial vaginosis. In thirteen cases, PM-477 killed the Gardnerella bacteria and physically dissolved the biofilms without affecting the remaining vaginal microbiome. The high selectivity and effectiveness in eliminating Gardnerella, both in cultures of isolated strains as well as in clinically derived samples of natural polymicrobial biofilms, makes PM-477 a promising alternative to antibiotics for the treatment of bacterial vaginosis, especially in patients with frequent recurrence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA