Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 12055, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491505

RESUMEN

Palaeoparasitological studies can provide valuable information on the emergence, distribution, and elimination of parasites during a particular time in the past. In the prehistoric salt mines of Hallstatt, located in the Austrian Alps, human faeces have been conserved in salt. The aim of this study was to recover ancient DNA of intestinal parasites from these coprolites. Altogether, 35 coprolites from the Hallstatt salt mines, dating back to the Bronze Age mining phase (1158-1063 BCE) and the Iron Age mining phase (750-662 BCE), respectively, were analysed by microscopy and molecular methods. In 91% of the coprolite samples, eggs of soil-transmitted helminths (STH), namely of Trichuris and/or Ascaris were detected by light microscopy. The Ascaris eggs were exceptionally well preserved. For further analysis, DNA was extracted from the palaeofaecal samples and species-specific primers targeting different genes were designed. While amplification of Trichuris DNA remained unsuccessful, sequence data of A. lumbricoides species complex were successfully obtained from 16 coprolites from three different genes, the mitochondrial cytochrome c oxidase subunit 1 gene (cox1), the mitochondrial cytochrome B gene (cytB) and the mitochondrial NADH dehydrogenase subunit 1 gene (nadh1). Importantly, these included two Ascaris sequences from a coprolite from the Bronze Age, which to the best of our knowledge are the first molecular data of this genus from this period.


Asunto(s)
Ascariasis , Infecciones por Nematodos , Animales , Humanos , Ascaris lumbricoides/genética , Austria , Ascaris/genética , Trichuris/genética , Heces/parasitología , Suelo
2.
Curr Biol ; 31(23): 5149-5162.e6, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34648730

RESUMEN

We subjected human paleofeces dating from the Bronze Age to the Baroque period (18th century AD) to in-depth microscopic, metagenomic, and proteomic analyses. The paleofeces were preserved in the underground salt mines of the UNESCO World Heritage site of Hallstatt in Austria. This allowed us to reconstruct the diet of the former population and gain insights into their ancient gut microbiome composition. Our dietary survey identified bran and glumes of different cereals as some of the most prevalent plant fragments. This highly fibrous, carbohydrate-rich diet was supplemented with proteins from broad beans and occasionally with fruits, nuts, or animal food products. Due to these traditional dietary habits, all ancient miners up to the Baroque period have gut microbiome structures akin to modern non-Westernized individuals whose diets are also mainly composed of unprocessed foods and fresh fruits and vegetables. This may indicate a shift in the gut community composition of modern Westernized populations due to quite recent dietary and lifestyle changes. When we extended our microbial survey to fungi present in the paleofeces, in one of the Iron Age samples, we observed a high abundance of Penicillium roqueforti and Saccharomyces cerevisiae DNA. Genome-wide analysis indicates that both fungi were involved in food fermentation and provides the first molecular evidence for blue cheese and beer consumption in Iron Age Europe.


Asunto(s)
Queso , Microbioma Gastrointestinal , Animales , Cerveza , Dieta , Hongos , Proteómica
3.
BMC Res Notes ; 11(1): 243, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29653594

RESUMEN

OBJECTIVE: In the Bronze Age Hallstatt metropolis ('Salzkammergut' region, Upper Austria), salt richness enabled the preservation of pork meat to sustain people's livelihood suggesting an organized meat production industry on a yearly basis of hundreds of pigs. To pattern the geographic and temporal framework of the early management of pig populations in the surrounding areas of Hallstatt, we want to gain insights into the phylogeographic network based on DNA sequence variation among modern pigs, wild boars and prehistoric (likely) domestic pigs. RESULTS: In this pilot study, we successfully adapted ancient DNA extraction and sequencing approaches for the analysis of mitochondrial DNA sequence variation in ten prehistoric porcine teeth specimens. Minimum-spanning network analyses revealed unique mitochondrial control region DNA haplotypes ranging within the variation of modern domestic pig and wild boar lineages and even shared haplotypes between prehistoric and modern domestic pigs and wild boars were observed.


Asunto(s)
ADN Antiguo/análisis , ADN Mitocondrial/análisis , Análisis de Secuencia de ADN/métodos , Cloruro de Sodio , Sus scrofa/genética , Animales , Austria , Minería , Proyectos Piloto
4.
PLoS One ; 11(2): e0148279, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26885815

RESUMEN

BACKGROUND: The prosperity of Hallstatt (Salzkammergut region, Austria) is based on the richness of salt in the surrounding mountains and salt mining, which is documented as far back as 1500 years B.C. Substantial archaeological evidence of Bronze and Iron Age salt mining has been discovered, with a wooden staircase (1108 B.C.) being one of the most impressive and well preserved finds. However, after its discovery, fungal mycelia have been observed on the surface of the staircase, most probably due to airborne contamination after its find. OBJECTIVE: As a basis for the further preservation of this valuable object, the active micro-flora was examined to investigate the presence of potentially biodegradative microorganisms. RESULTS: Most of the strains isolated from the staircase showed to be halotolerant and halophilic microorganisms, due to the saline environment of the mine. Results derived from culture-dependent assays revealed a high fungal diversity, including both halotolerant and halophilic fungi, the most dominant strains being members of the genus Phialosimplex (synonym: Aspergillus). Additionally, some typical cellulose degraders, namely Stachybotrys sp. and Cladosporium sp. were detected. Numerous bacterial strains were isolated and identified as members of 12 different genera, most of them being moderately halophilic species. The most dominant isolates affiliated with species of the genera Halovibrio and Marinococcus. Halophilic archaea were also isolated and identified as species of the genera Halococcus and Halorubrum. Molecular analyses complemented the cultivation assays, enabling the identification of some uncultivable archaea of the genera Halolamina, Haloplanus and Halobacterium. Results derived from fungi and bacteria supported those obtained by cultivation methods, exhibiting the same dominant members in the communities. CONCLUSION: The results clearly showed the presence of some cellulose degraders that may become active if the requirements for growth and the environmental conditions turn suitable; therefore, these microorganisms must be regarded as a threat to the wood.


Asunto(s)
Arquitectura/historia , Halobacteriaceae/metabolismo , Austria , Secuencia de Bases , Análisis por Conglomerados , ADN Bacteriano/genética , Halobacteriaceae/genética , Historia Antigua , Filogenia , Reacción en Cadena de la Polimerasa , Técnica del ADN Polimorfo Amplificado Aleatorio , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...