Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37905135

RESUMEN

Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a male mouse model for head and neck cancer, we utilized neuronal tracing techniques and show that tumor-infiltrating nerves indeed connect to distinct brain areas via the ipsilateral trigeminal ganglion. The activation of this neuronal circuitry led to behavioral alterations represented by decreased nest-building, increased latency to eat a cookie, and reduced wheel running. Tumor-infiltrating nociceptor neurons exhibited heightened activity, as indicated by increased calcium mobilization. Correspondingly, the specific brain regions receiving these neural projections showed elevated cFos and delta FosB expression in tumor-bearing mice, alongside markedly intensified calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons in tumor-bearing mice led to decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment successfully restored behaviors involving oral movements to normalcy in tumor-bearing mice, it did not have a similar therapeutic effect on voluntary wheel running. This discrepancy points towards an intricate relationship, where pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer. Significance Statement: Head and neck cancers are infiltrated by sensory nerves which connect to a pre-existing circuit that includes areas in the brain. Neurons within this circuit are altered and mediate modifications in behavior.

2.
Sci Adv ; 9(19): eade4443, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37163587

RESUMEN

The molecular and functional contributions of intratumoral nerves to disease remain largely unknown. We localized synaptic markers within tumors suggesting that these nerves form functional connections. Consistent with this, electrophysiological analysis shows that malignancies harbor significantly higher electrical activity than benign disease or normal tissues. We also demonstrate pharmacologic silencing of tumoral electrical activity. Tumors implanted in transgenic animals lacking nociceptor neurons show reduced electrical activity. These data suggest that intratumoral nerves remain functional at the tumor bed. Immunohistochemical staining demonstrates the presence of the neuropeptide, Substance P (SP), within the tumor space. We show that tumor cells express the SP receptor, NK1R, and that ligand/receptor engagement promotes cellular proliferation and migration. Our findings identify a mechanism whereby intratumoral nerves promote cancer progression.


Asunto(s)
Neoplasias de la Mama , Neuronas , Neoplasias Ováricas , Carcinoma de Células Escamosas de Cabeza y Cuello , Animales , Ratones , Modelos Animales de Enfermedad , Humanos , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Sustancia P/metabolismo , Línea Celular Tumoral , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Neoplasias Ováricas/epidemiología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/secundario , Neuronas/patología , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos , Ovario/inervación , Virus del Papiloma Humano , Análisis de Supervivencia
3.
Nature ; 611(7935): 405-412, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36323780

RESUMEN

Solid tumours are innervated by nerve fibres that arise from the autonomic and sensory peripheral nervous systems1-5. Whether the neo-innervation of tumours by pain-initiating sensory neurons affects cancer immunosurveillance remains unclear. Here we show that melanoma cells interact with nociceptor neurons, leading to increases in their neurite outgrowth, responsiveness to noxious ligands and neuropeptide release. Calcitonin gene-related peptide (CGRP)-one such nociceptor-produced neuropeptide-directly increases the exhaustion of cytotoxic CD8+ T cells, which limits their capacity to eliminate melanoma. Genetic ablation of the TRPV1 lineage, local pharmacological silencing of nociceptors and antagonism of the CGRP receptor RAMP1 all reduced the exhaustion of tumour-infiltrating leukocytes and decreased the growth of tumours, nearly tripling the survival rate of mice that were inoculated with B16F10 melanoma cells. Conversely, CD8+ T cell exhaustion was rescued in sensory-neuron-depleted mice that were treated with local recombinant CGRP. As compared with wild-type CD8+ T cells, Ramp1-/- CD8+ T cells were protected against exhaustion when co-transplanted into tumour-bearing Rag1-deficient mice. Single-cell RNA sequencing of biopsies from patients with melanoma revealed that intratumoral RAMP1-expressing CD8+ T cells were more exhausted than their RAMP1-negative counterparts, whereas overexpression of RAMP1 correlated with a poorer clinical prognosis. Overall, our results suggest that reducing the release of CGRP from tumour-innervating nociceptors could be a strategy to improve anti-tumour immunity by eliminating the immunomodulatory effects of CGRP on cytotoxic CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos , Melanoma , Nociceptores , Animales , Ratones , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/farmacología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Melanoma/inmunología , Melanoma/patología , Nociceptores/fisiología , Células Receptoras Sensoriales/metabolismo , Neuritas/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Tasa de Supervivencia , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Genes RAG-1/genética , Humanos , Biopsia , Pronóstico
4.
FASEB Bioadv ; 4(1): 29-42, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35024571

RESUMEN

The identification of nerves in the tumor microenvironment has ushered in a new area of research in cancer biology. Numerous studies demonstrate the presence of various types of peripheral nerves (sympathetic, parasympathetic, sensory) within the tumor microenvironment; moreover, an increased density of nerves in the tumor microenvironment correlates with worse prognosis. In this review, we address the current understanding of nerve-mediated alterations of the tumor microenvironment and how they impact disease through a variety of processes, including direct nerve-cancer cell communication, alteration of the infiltrative immune population, and alteration of stromal components.

5.
Cells ; 10(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34944001

RESUMEN

Dense tumor innervation is associated with enhanced cancer progression and poor prognosis. We observed innervation in breast, prostate, pancreatic, lung, liver, ovarian, and colon cancers. Defining innervation in high-grade serous ovarian carcinoma (HGSOC) was a focus since sensory innervation was observed whereas the normal tissue contains predominantly sympathetic input. The origin, specific nerve type, and the mechanisms promoting innervation and driving nerve-cancer cell communications in ovarian cancer remain largely unknown. The technique of neuro-tracing enhances the study of tumor innervation by offering a means for identification and mapping of nerve sources that may directly and indirectly affect the tumor microenvironment. Here, we establish a murine model of HGSOC and utilize image-guided microinjections of retrograde neuro-tracer to label tumor-infiltrating peripheral neurons, mapping their source and circuitry. We show that regional sensory neurons innervate HGSOC tumors. Interestingly, the axons within the tumor trace back to local dorsal root ganglia as well as jugular-nodose ganglia. Further manipulations of these tumor projecting neurons may define the neuronal contributions in tumor growth, invasion, metastasis, and responses to therapeutics.


Asunto(s)
Cistadenocarcinoma Seroso/patología , Tejido Nervioso/patología , Neoplasias Ováricas/patología , Animales , Cistadenocarcinoma Seroso/diagnóstico por imagen , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/metabolismo , Ratones Endogámicos C57BL , Tejido Nervioso/diagnóstico por imagen , Neoplasias Ováricas/diagnóstico por imagen , Fosfohidrolasa PTEN/metabolismo , Células Receptoras Sensoriales/patología , Proteína p53 Supresora de Tumor/metabolismo , Ultrasonografía
6.
Immunogenetics ; 66(3): 199-213, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24291825

RESUMEN

The zebrafish is an important animal model for stem cell biology, cancer, and immunology research. Histocompatibility represents a key intersection of these disciplines; however, histocompatibility in zebrafish remains poorly understood. We examined a set of diverse zebrafish class I major histocompatibility complex (MHC) genes that segregate with specific haplotypes at chromosome 19, and for which donor-recipient matching has been shown to improve engraftment after hematopoietic transplantation. Using flanking gene polymorphisms, we identified six distinct chromosome 19 haplotypes. We describe several novel class I U lineage genes and characterize their sequence properties, expression, and haplotype distribution. Altogether, ten full-length zebrafish class I genes were analyzed, mhc1uba through mhc1uka. Expression data and sequence properties indicate that most are candidate classical genes. Several substitutions in putative peptide anchor residues, often shared with deduced MHC molecules from additional teleost species, suggest flexibility in antigen binding. All ten zebrafish class I genes were uniquely assigned among the six haplotypes, with dominant or codominant expression of one to three genes per haplotype. Interestingly, while the divergent MHC haplotypes display variable gene copy number and content, the different genes appear to have ancient origin, with extremely high levels of sequence diversity. Furthermore, haplotype variability extends beyond the MHC genes to include divergent forms of psmb8. The many disparate haplotypes at this locus therefore represent a remarkable form of genomic region configuration polymorphism. Defining the functional MHC genes within these divergent class I haplotypes in zebrafish will provide an important foundation for future studies in immunology and transplantation.


Asunto(s)
Expresión Génica , Genes MHC Clase I , Haplotipos , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , Secuencia Conservada , Regulación de la Expresión Génica , Ligamiento Genético , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple , Alineación de Secuencia , Análisis de Secuencia de ADN , Pez Cebra/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA