Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 33(4): e2854, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37032063

RESUMEN

As the climate changes, it is increasingly important to understand how forests will respond to drought and how forest management can influence those outcomes. In many forests that have become unnaturally dense, "restoration treatments," which decrease stand density using fire and/or mechanical thinning, are generally associated with reduced mortality during drought. However, the effects of such treatments on tree growth during drought are less clear. Previous studies have yielded apparently contradictory results, which may stem from differences in underlying aridity or drought intensity across studies. To address this uncertainty, we studied the growth of ponderosa pine (Pinus ponderosa) in paired treated and untreated areas before and during the extreme California drought of 2012-2016. Our study spanned gradients in climate and tree size and found that density reduction treatments could completely ameliorate drought-driven declines in growth under some contexts, specifically in more mesic areas and in medium-sized trees (i.e., normal annual precipitation > ca. 1100 mm and tree diameter at breast height < ca. 65 cm). Treatments were much less effective in ameliorating drought-associated growth declines in the most water-limited sites and largest trees, consistent with underlying ecophysiology. In medium-sized trees and wetter sites, growth of trees in untreated stands decreased by more than 15% during drought, while treatment-associated increases in growth of 25% or more persisted during the drought. Trees that ultimately died due to drought showed greater growth reductions during drought relative to trees that survived. Our results suggest that density reduction treatments can increase tree resistance to water stress, and they highlight an important pathway for treatments to influence carbon sequestration and other ecosystem services beyond mitigating tree mortality.


Asunto(s)
Resistencia a la Sequía , Pinus ponderosa , Pinus ponderosa/fisiología , Ecosistema , Bosques , Árboles/fisiología , Sequías
2.
Glob Chang Biol ; 26(9): 5146-5163, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32433807

RESUMEN

A central challenge in global change research is the projection of the future behavior of a system based upon past observations. Tree-ring data have been used increasingly over the last decade to project tree growth and forest ecosystem vulnerability under future climate conditions. But how can the response of tree growth to past climate variation predict the future, when the future does not look like the past? Space-for-time substitution (SFTS) is one way to overcome the problem of extrapolation: the response at a given location in a warmer future is assumed to follow the response at a warmer location today. Here we evaluated an SFTS approach to projecting future growth of Douglas-fir (Pseudotsuga menziesii), a species that occupies an exceptionally large environmental space in North America. We fit a hierarchical mixed-effects model to capture ring-width variability in response to spatial and temporal variation in climate. We found opposing gradients for productivity and climate sensitivity with highest growth rates and weakest response to interannual climate variation in the mesic coastal part of Douglas-fir's range; narrower rings and stronger climate sensitivity occurred across the semi-arid interior. Ring-width response to spatial versus temporal temperature variation was opposite in sign, suggesting that spatial variation in productivity, caused by local adaptation and other slow processes, cannot be used to anticipate changes in productivity caused by rapid climate change. We thus substituted only climate sensitivities when projecting future tree growth. Growth declines were projected across much of Douglas-fir's distribution, with largest relative decreases in the semiarid U.S. Interior West and smallest in the mesic Pacific Northwest. We further highlight the strengths of mixed-effects modeling for reviving a conceptual cornerstone of dendroecology, Cook's 1987 aggregate growth model, and the great potential to use tree-ring networks and results as a calibration target for next-generation vegetation models.


Asunto(s)
Pseudotsuga , Cambio Climático , Ecosistema , América del Norte , Noroeste de Estados Unidos , Árboles
3.
Ecol Appl ; 30(1): e02002, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31519065

RESUMEN

Rising temperatures and more frequent and severe droughts are driving increases in tree mortality in forests around the globe. However, in many cases, the likely trajectories of forest recovery following drought-related mortality are poorly understood. In many fire-suppressed western U.S. forests, management is applied to reverse densification and restore natural forest structure and species composition, but it is unclear how such management affects post-mortality recovery. We addressed these uncertainties by examining forest stands that experienced mortality during the severe drought of 2012-2016 in California, USA. We surveyed post-drought vegetation along a gradient of overstory mortality severity in paired treated (mechanically thinned or prescribed-burned) and untreated areas in the Sierra Nevada. Treatment substantially reduced tree density, particularly in smaller tree size classes, and these effects persisted through severe drought-related overstory mortality. However, even in treated areas with severe mortality (>67% basal area mortality), the combined density of residual (surviving) trees (mean 44 trees/ha) and saplings (mean 189 saplings/ha) frequently (86% of plots) fell within or exceeded the natural range of variation (NRV) of tree density, suggesting little need for reforestation intervention to increase density. Residual tree densities in untreated high-mortality plots were significantly higher (mean 192 trees/ha and 506 saplings/ha), and 96% of these plots met or exceeded the NRV. Treatment disproportionately removed shade-tolerant conifer species, while mortality in the drought event was concentrated in pines (Pinus ponderosa and P. lambertiana); as a consequence, the residual trees, saplings, and seedlings in treated areas, particularly those that had experienced moderate or high drought-related mortality, were more heavily dominated by broadleaf ("hardwood") trees (particularly Quercus kelloggii and Q. chrysolepis). In contrast, residual trees and regeneration in untreated stands were heavily dominated by shade-tolerant conifer species (Abies concolor and Calocedrus decurrens), suggesting a need for future treatment. Because increased dominance of hardwoods brings benefits for plant and animal diversity and stand resilience, the ecological advantages of mechanical thinning and prescribed fire treatments may, depending on the management perspective, extend even to stands that ultimately experience high drought-related mortality following treatment.


Asunto(s)
Sequías , Incendios , Animales , California , Bosques , Árboles
5.
Ecol Appl ; 29(4): e01902, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31020735

RESUMEN

Extreme drought stress and associated bark beetle population growth contributed to an extensive tree mortality event in California, USA, resulting in more than 129 million trees dying between 2012 and 2016. Although drought is an important driver of this mortality event, past and ongoing fire suppression and the consequent densification of forests may have contributed. In some areas, land management agencies have worked to reduce stand density through mechanical treatments and prescribed fire to restore forests to less dense, more open conditions that are presumably more resilient to disturbance and changing climate. Here, we evaluate if stand structural conditions associated with treated (e.g., thinned and prescribed burned) forests in the Sierra Nevada of California conferred more resistance to the bark beetle epidemic and drought event of 2012-2016. We found that, compared to untreated units, treated units had lower stand densities, larger average tree diameters, and greater dominance of pines (Pinus), the historically dominant trees. For all tree species studied, mortality was substantially greater in climatically drier areas (i.e., lower elevations and latitudes). Both pine species studied (ponderosa pine [Pinus ponderosa] and sugar pine [Pinus lambertiana]) had greater mortality in areas where their diameters were larger, suggesting a size preference for their insect mortality agents. For ponderosa pine, the tree species experiencing greatest mortality, individual-tree mortality probability (for a given tree diameter) was significantly lower in treated stands. Ponderosa pine mortality was also positively related to density of medium- to large-sized conspecific trees, especially in areas with lower precipitation, suggesting that abundance of nearby host trees for insect mortality agents was an important determinant of pine mortality. Mortality of incense cedar (Calocedrus decurrens) and white fir (Abies concolor) was positively associated with basal area, suggesting sensitivity to competition during drought, but overall mortality was lower, likely because the most prevalent and effective mortality agents (the bark beetles Dendroctonus brevicomis and D. ponderosae) are associated specifically with pine species within our study region. Our findings suggest that forest thinning treatments are effective in reducing drought-related tree mortality in forests, and they underscore the important interaction between water and forest density in mediating bark beetle-caused mortality.


Asunto(s)
Sequías , Pinus , Animales , California , Clima , Bosques , Nevada
6.
Ecol Appl ; 27(5): 1498-1513, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28370925

RESUMEN

Historical forest conditions are often used to inform contemporary management goals because historical forests are considered to be resilient to ecological disturbances. The General Land Office (GLO) surveys of the late 19th and early 20th centuries provide regionally quasi-contiguous data sets of historical forests across much of the Western United States. Multiple methods exist for estimating tree density from point-based sampling such as the GLO surveys, including distance-based and area-based approaches. Area-based approaches have been applied in California mixed-conifer forests but their estimates have not been validated. To assess the accuracy and precision of plotless density estimators with potential for application to GLO data in this region, we imposed a GLO sampling scheme on six mapped forest stands of known densities (159-784 trees/ha) in the Sierra Nevada in California, USA, and Baja California Norte, Mexico. We compared three distance-based plotless density estimators (Cottam, Pollard, and Morisita) as well as two Voronoi area (VA) estimators, the Delincé and mean harmonic Voronoi density (MHVD), to the true densities. We simulated sampling schemes of increasing intensity to assess sampling error. The relative error (RE) of density estimates for the GLO sampling scheme ranged from 0.36 to 4.78. The least biased estimate of tree density in every stand was obtained with the Morisita estimator and the most biased was obtained with the MHVD estimator. The MHVD estimates of tree density were 1.2-3.8 times larger than the true densities and performed best in stands subject to fire exclusion for 100 yr. The Delincé approach obtained accurate estimates of density, implying that the Voronoi approach is theoretically sound but that its application in the MHVD was flawed. The misapplication was attributed to two causes: (1) the use of a crown scaling factor that does not correct for the number of trees sampled and (2) the persistent underestimate of the true VA due to a weak relationship between tree size and VA. The magnitude of differences between true densities and MHVD estimates suggest caution in using results based on the MHVD to inform management and restoration practices in the conifer forests of the American West.


Asunto(s)
Agricultura Forestal/métodos , Bosques , Árboles/fisiología , California , México , Modelos Biológicos , Modelos Estadísticos , Densidad de Población
7.
Proc Natl Acad Sci U S A ; 113(34): 9557-62, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27503880

RESUMEN

Changes in tree growth rates can affect tree mortality and forest feedbacks to the global carbon cycle. As air temperature increases, evaporative demand also increases, increasing effective drought in forest ecosystems. Using a spatially comprehensive network of Douglas fir (Pseudotsuga menziesii) chronologies from 122 locations that represent distinct climate environments in the western United States, we show that increased temperature decreases growth via vapor pressure deficit (VPD) across all latitudes. Using an ensemble of global circulation models, we project an increase in both the mean VPD associated with the lowest growth extremes and the probability of exceeding these VPD values. As temperature continues to increase in future decades, we can expect deficit-related stress to increase and consequently Douglas fir growth to decrease throughout its US range.


Asunto(s)
Sequías/estadística & datos numéricos , Modelos Estadísticos , Transpiración de Plantas/fisiología , Pseudotsuga/crecimiento & desarrollo , Agua/metabolismo , Clima , Ecosistema , Bosques , Noroeste de Estados Unidos , Pseudotsuga/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...