Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hepatol ; 77(1): 29-41, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35085593

RESUMEN

BACKGROUND & AIMS: Over time, chronic HCV infection can lead to hepatocellular carcinoma (HCC), a process that involves changes to the liver extracellular matrix (ECM). However, the exact mechanisms by which HCV induces HCC remain unclear. Therefore, we sought to investigate the impact of HCV on the liver ECM, with a focus on heparanase-1 (HPSE). METHODS: HPSE expression was assessed by quantitative reverse-transcription PCR, immunoblotting and immunofluorescence in liver biopsies infected or not with HCV, and in 10-day-infected hepatoma Huh7.5 cells. Cell lines deficient for or overexpressing HPSE were established to study its role during infection. RESULTS: HCV propagation led to significant HPSE induction, in vivo and in vitro. HPSE enhanced infection when exogenously expressed or supplemented as a recombinant protein. Conversely, when HPSE expression was downregulated or its activity blocked, HCV infection dropped, suggesting a role of HPSE in the HCV life cycle. We further studied the underlying mechanisms of such observations and found that HPSE favored HCV release by enhancing CD63 synthesis and exosome secretion, but not by stimulating HCV entry or genome replication. We also showed that virus-induced oxidative stress was involved in HPSE induction, most likely through NF-κB activation. CONCLUSIONS: We report for the first time that HCV infection is favored by HPSE, and upregulates HPSE expression and secretion, which may result in pathogenic alterations of the ECM. LAY SUMMARY: Chronic hepatitis C virus (HCV) infection can lead to hepatocellular carcinoma development in a process that involves derangement of the extracellular matrix (ECM). Herein, we show that heparanase-1, a protein involved in ECM degradation and remodeling, favors HCV infection and is upregulated by HCV infection; this upregulation may result in pathogenic alterations of the ECM.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C Crónica , Hepatitis C , Neoplasias Hepáticas , Carcinoma Hepatocelular/patología , Glucuronidasa , Hepacivirus , Humanos , Neoplasias Hepáticas/patología , Replicación Viral
2.
Cancers (Basel) ; 13(9)2021 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-34065048

RESUMEN

Chronic infection by the hepatitis C virus (HCV) is a major cause of liver diseases, predisposing to fibrosis and hepatocellular carcinoma. Liver fibrosis is characterized by an overly abundant accumulation of components of the hepatic extracellular matrix, such as collagen and elastin, with consequences on the properties of this microenvironment and cancer initiation and growth. This review will provide an update on mechanistic concepts of HCV-related liver fibrosis/cirrhosis and early stages of carcinogenesis, with a dissection of the molecular details of the crosstalk during disease progression between hepatocytes, the extracellular matrix, and hepatic stellate cells.

3.
Sci Rep ; 9(1): 17967, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31784555

RESUMEN

Direct stochastic optical reconstruction microscopy (dSTORM), developed in the last decade, has revolutionised optical microscopy by enabling scientists to visualise objects beyond the resolution provided by conventional microscopy (200 nm). We developed an innovative method based on blinking particle standards and conditions for long-lived imaging over several weeks. Stable localisation precisions within the 10 nm-range were achieved for single virions and in cellulo 2D imaging of centrosomes, as well as their reliable reconstruction in 3D dSTORM.

4.
Biochem Biophys Res Commun ; 512(1): 7-13, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30853184

RESUMEN

Fibrosis is a serious health problem often leading to accompanying organ failure. During the manifestation of the disease, an accumulation of different extracellular matrix (ECM) molecules, such as proteoglycans, takes place. There is no appropriate therapeutic option available to heal fibrosis to date. Current research focuses primarily on targets such as the cytokine transforming growth factor-ß1 (TGF-ß1), which is assumed to be one of the key mediators of fibrosis. Both xylosyltransferase isoforms, XT-I and XT-II, catalyze the rate-limiting step of the proteoglycan biosynthesis. Consequently, inhibiting XT activity could be a promising approach to treat fibrosis. It was shown in earlier studies that nucleotides and nucleosides have anti-fibrotic properties and decrease XT activity in cell-free systems. In contrast, we evaluated the mechanisms beyond an UDP-mediated induction of intracellular XT-activity in normal human dermal fibroblasts (NHDF). The observed pseudo-fibrotic XT increasement could be attributed to a compensation of decreased UDP-glucuronate decarboxylase 1 (UXS1) mRNA expression as well as a diminished intracellular UDP-xylose concentration. In summary, our results describe a so far unknown XT-inductive pathway and show that UDP could be a promising molecule for the development of an anti-fibrotic therapy. Nevertheless, XT activity has to be inhibited in parallel intracellularly.


Asunto(s)
Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Pentosiltransferasa/biosíntesis , Uridina Difosfato/farmacología , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/genética , Carboxiliasas/metabolismo , Células Cultivadas , Desarrollo de Medicamentos , Inducción Enzimática/efectos de los fármacos , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/patología , Fibrosis/tratamiento farmacológico , Fibrosis/enzimología , Fibrosis/patología , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Xilosa/metabolismo , UDP Xilosa Proteína Xilosiltransferasa
5.
Cell Microbiol ; 19(5)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27930836

RESUMEN

The hepatitis C virus (HCV) infects hepatocytes after binding to heparan sulfate proteoglycans, in particular Syndecan-1, followed by recognition of the tetraspanin CD81 and other receptors. Heparan sulfate proteoglycans are found in a specific microenvironment coating the hepatocyte surface called the glycocalyx and are receptors for extracellular matrix proteins, cytokines, growth factors, lipoproteins, and infectious agents. We investigated the mutual influence of HCV infection on the glycocalyx and revealed new links between Syndecan-1 and CD81. Hepatocyte infection by HCV was inhibited after knocking down Syndecan-1 or Xylosyltransferase 2, a key enzyme of Syndecan-1 biosynthesis. Simultaneous knockdown of Syndecan-1 and CD81 strongly inhibited infection, suggesting their cooperative action. At early infection stages, Syndecan-1 and virions colocalized at the plasma membrane and were internalized in endosomes. Direct interactions between Syndecan-1 and CD81 were revealed in primary and transformed hepatocytes by immunoprecipitation and proximity ligation assays. Expression of Syndecan-1 and Xylosyltransferase 2 was altered within days post-infection, and the remaining Syndecan-1 pool colocalized poorly with CD81. The data indicate a profound reshuffling of the hepatocyte glycocalyx during HCV infection, possibly required for establishing optimal conditions of viral propagation.


Asunto(s)
Glicocálix/metabolismo , Hepacivirus/fisiología , Hepatitis C/virología , Hepatocitos/virología , Sindecano-1/metabolismo , Tetraspanina 28/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Células Hep G2 , Hepatitis C/metabolismo , Hepatocitos/metabolismo , Interacciones Huésped-Patógeno , Humanos , Pentosiltransferasa/metabolismo , Transporte de Proteínas , Receptores Virales/metabolismo , Replicación Viral , UDP Xilosa Proteína Xilosiltransferasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...