Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
RNA Biol ; 18(12): 2617-2632, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34121604

RESUMEN

Ribosome-associated non-coding RNAs (rancRNAs) have been recognized as an emerging class of regulatory molecules capable of fine-tuning translation in all domains of life. RancRNAs are ideally suited for allowing a swift response to changing environments and are therefore considered pivotal during the first wave of stress adaptation. Previously, we identified an mRNA-derived 18 nucleotides long rancRNA (rancRNA_18) in Saccharomyces cerevisiae that rapidly downregulates protein synthesis during hyperosmotic stress. However, the molecular mechanism of action remained enigmatic. Here, we combine biochemical, genetic, transcriptome-wide and structural evidence, thus revealing rancRNA_18 as global translation inhibitor by targeting the E-site region of the large ribosomal subunit. Ribosomes carrying rancRNA_18 possess decreased affinity for A-site tRNA and impaired structural dynamics. Cumulatively, these discoveries reveal the mode of action of a rancRNA involved in modulating protein biosynthesis at a thus far unequalled precision.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , ARN no Traducido/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , ARN Mensajero/genética , ARN de Transferencia/genética , ARN no Traducido/genética , Ribosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
2.
Nucleic Acids Res ; 48(6): 3244-3256, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31960048

RESUMEN

Fine-tuned regulation of protein biosynthesis is crucial for cellular fitness and became even more vital when cellular and organismal complexity increased during the course of evolution. In order to cope with this augmented demand for translation control, eukaryal ribosomes have gained extensions both at the ribosomal protein and rRNA levels. Here we analyze the functional role of ES27L, an rRNA expansion segment in the large ribosomal subunit of Saccharomyces cerevisiae. Deletion of the b-arm of this expansion segment, called ES27Lb, did not hamper growth during optimal conditions, thus demonstrating that this 25S rRNA segment is not inherently crucial for ribosome functioning. However, reductive stress results in retarded growth and rendered unique protein sets prone to aggregation. Lack of ES27Lb negatively affects ribosome-association of known co-translational N-terminal processing enzymes which in turn contributes to the observed protein aggregation. Likely as a compensatory response to these challenges, the truncated ribosomes showed re-adjusted translation of specific sets of mRNAs and thus fine-tune the translatome in order to re-establish proteostasis. Our study gives comprehensive insight into how a highly conserved eukaryal rRNA expansion segment defines ribosomal integrity, co-translational protein maturation events and consequently cellular fitness.


Asunto(s)
Proteoma/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Unión Proteica/genética , ARN de Hongos/genética , ARN Ribosómico/genética , Saccharomyces cerevisiae/genética
3.
RNA Biol ; 14(10): 1364-1373, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27892771

RESUMEN

Posttranscriptional processing of RNA molecules is a common strategy to enlarge the structural and functional repertoire of RNomes observed in all 3 domains of life. Fragmentation of RNA molecules of basically all functional classes has been reported to yield smaller non-protein coding RNAs (ncRNAs) that typically possess different roles compared with their parental transcripts. Here we show that a valine tRNA-derived fragment (Val-tRF) that is produced under certain stress conditions in the halophilic archaeon Haloferax volcanii is capable of binding to the small ribosomal subunit. As a consequence of Val-tRF binding mRNA is displaced from the initiation complex which results in global translation attenuation in vivo and in vitro. The fact that the archaeal Val-tRF also inhibits eukaryal as well as bacterial protein biosynthesis implies a functionally conserved mode of action. While tRFs and tRNA halves have been amply identified in recent RNA-seq project, Val-tRF described herein represents one of the first functionally characterized tRNA processing products to date.


Asunto(s)
Haloferax volcanii/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Valina/metabolismo , Ribosomas/metabolismo , Regulación de la Expresión Génica Arqueal , Haloferax volcanii/química , Haloferax volcanii/metabolismo , Modelos Moleculares , Biosíntesis de Proteínas , ARN de Archaea/metabolismo , ARN Mensajero/química , ARN de Transferencia de Valina/química , Ribosomas/química , Estrés Fisiológico
4.
EMBO J ; 34(14): 1905-24, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25971775

RESUMEN

Translation of aberrant or problematic mRNAs can cause ribosome stalling which leads to the production of truncated or defective proteins. Therefore, cells evolved cotranslational quality control mechanisms that eliminate these transcripts and target arrested nascent polypeptides for proteasomal degradation. Here we show that Not4, which is part of the multifunctional Ccr4-Not complex in yeast, associates with polysomes and contributes to the negative regulation of protein synthesis. Not4 is involved in translational repression of transcripts that cause transient ribosome stalling. The absence of Not4 affected global translational repression upon nutrient withdrawal, enhanced the expression of arrested nascent polypeptides and caused constitutive protein folding stress and aggregation. Similar defects were observed in cells with impaired mRNA decapping protein function and in cells lacking the mRNA decapping activator and translational repressor Dhh1. The results suggest a role for Not4 together with components of the decapping machinery in the regulation of protein expression on the mRNA level and emphasize the importance of translational repression for the maintenance of proteome integrity.


Asunto(s)
Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Homeostasis , Polilisina/metabolismo , Polirribosomas/genética , Polirribosomas/metabolismo , Proteínas de Unión a Caperuzas de ARN/genética , Proteínas de Unión a Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Proteínas Represoras , Ribonucleasas/genética , Ribonucleasas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética
5.
Protein Sci ; 24(8): 1282-91, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25970093

RESUMEN

The kinetics and thermodynamics of protein folding are commonly studied in vitro by denaturing/renaturing intact protein sequences. How these folding mechanisms relate to de novo folding that occurs as the nascent polypeptide emerges from the ribosome is much less well understood. Here, we have employed limited proteolysis followed by mass spectrometry analyses to compare directly free and ribosome-tethered polypeptide chains of the Src-homology 3 (SH3) domain and its unfolded variant, SH3-m10. The disordered variant was found to undergo faster proteolysis than SH3. Furthermore, the trypsin cleavage patterns observed show minor, but significant, differences for the free and ribosome-bound nascent chains, with significantly fewer tryptic peptides detected in the presence of ribosome. The results highlight the utility of limited proteolysis coupled with mass spectrometry for the structural analysis of these complex systems, and pave the way for detailed future analyses by combining this technique with chemical labeling methods (for example, hydrogen-deuterium exchange, photochemical oxidation) to analyze protein folding in real time, including in the presence of additional ribosome-associated factors.


Asunto(s)
Péptidos/química , Pliegue de Proteína , Ribosomas/química , Dominios Homologos src , Secuencia de Aminoácidos , Dicroismo Circular , Datos de Secuencia Molecular , Desplegamiento Proteico , Proteolisis , Espectrometría de Masa por Ionización de Electrospray
6.
J Biol Chem ; 287(30): 25602-14, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22645139

RESUMEN

In the yeast Saccharomyces cerevisiae, key regulatory enzymes of gluconeogenesis such as fructose-1,6-bisphosphatase are degraded via the ubiquitin proteasome system when cells are replenished with glucose. Polyubiquitination is carried out by the Gid complex, a multisubunit ubiquitin ligase that consists of seven different Gid (glucose-induced degradation-deficient) proteins. Under gluconeogenic conditions the E3 ligase is composed of six subunits (Gid1/Vid30, Gid2/Rmd5, Gid5/Vid28, Gid7, Gid8, and Gid9/Fyv10). Upon the addition of glucose the regulatory subunit Gid4/Vid24 appears, binds to the Gid complex, and triggers ubiquitination of fructose-1,6-bisphosphatase. All seven proteins are essential for this process; however, nothing is known about the arrangement of the subunits in the complex. Interestingly, each Gid protein possesses several remarkable motifs (e.g. SPRY, LisH, CTLH domains) that may play a role in protein-protein interaction. We, therefore, generated altered versions of individual Gid proteins by deleting or mutating these domains and performed co-immunoprecipitation experiments to analyze the interaction between distinct subunits. Thus, we were able to create an initial model of the topology of this unusual E3 ubiquitin ligase.


Asunto(s)
Gluconeogénesis/fisiología , Modelos Moleculares , Complejos Multienzimáticos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Ubiquitina-Proteína Ligasas , Ubiquitinación/fisiología , Secuencias de Aminoácidos , Glucosa/química , Glucosa/genética , Glucosa/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...