Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Cancer ; 4(8): 1102-1121, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37460872

RESUMEN

Cancer is highly infiltrated by myeloid-derived suppressor cells (MDSCs). Currently available immunotherapies do not completely eradicate MDSCs. Through a genome-wide analysis of the translatome of prostate cancers driven by different genetic alterations, we demonstrate that prostate cancer rewires its secretome at the translational level to recruit MDSCs. Among different secreted proteins released by prostate tumor cells, we identified Hgf, Spp1 and Bgn as the key factors that regulate MDSC migration. Mechanistically, we found that the coordinated loss of Pdcd4 and activation of the MNK/eIF4E pathways regulate the mRNAs translation of Hgf, Spp1 and Bgn. MDSC infiltration and tumor growth were dampened in prostate cancer treated with the MNK1/2 inhibitor eFT508 and/or the AKT inhibitor ipatasertib, either alone or in combination with a clinically available MDSC-targeting immunotherapy. This work provides a therapeutic strategy that combines translation inhibition with available immunotherapies to restore immune surveillance in prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Proteínas Serina-Treonina Quinasas , Masculino , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosforilación , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Próstata/genética , Células Mieloides/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Osteopontina/metabolismo , Biglicano/metabolismo
3.
Cell Rep ; 42(3): 112129, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36821441

RESUMEN

TGF-ß induces senescence in embryonic tissues. Whether TGF-ß in the hypoxic tumor microenvironment (TME) induces senescence in cancer and how the ensuing senescence-associated secretory phenotype (SASP) remodels the cellular TME to influence immune checkpoint inhibitor (ICI) responses are unknown. We show that TGF-ß induces a deeper senescent state under hypoxia than under normoxia; deep senescence correlates with the degree of E2F suppression and is marked by multinucleation, reduced reentry into proliferation, and a distinct 14-gene SASP. Suppressing TGF-ß signaling in tumors in an immunocompetent mouse lung cancer model abrogates endogenous senescent cells and suppresses the 14-gene SASP and immune infiltration. Untreated human lung cancers with a high 14-gene SASP display immunosuppressive immune infiltration. In a lung cancer clinical trial of ICIs, elevated 14-gene SASP is associated with increased senescence, TGF-ß and hypoxia signaling, and poor progression-free survival. Thus, TME-induced senescence may represent a naturally occurring state in cancer, contributing to an immune-suppressive phenotype associated with immune therapy resistance.


Asunto(s)
Neoplasias Pulmonares , Factor de Crecimiento Transformador beta , Ratones , Animales , Humanos , Fenotipo , Modelos Animales de Enfermedad , Microambiente Celular , Microambiente Tumoral , Senescencia Celular/fisiología
4.
Nat Commun ; 13(1): 2177, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449130

RESUMEN

Cells subjected to treatment with anti-cancer therapies can evade apoptosis through cellular senescence. Persistent senescent tumor cells remain metabolically active, possess a secretory phenotype, and can promote tumor proliferation and metastatic dissemination. Removal of senescent tumor cells (senolytic therapy) has therefore emerged as a promising therapeutic strategy. Here, using single-cell RNA-sequencing, we find that senescent tumor cells rely on the anti-apoptotic gene Mcl-1 for their survival. Mcl-1 is upregulated in senescent tumor cells, including cells expressing low levels of Bcl-2, an established target for senolytic therapy. While treatment with the Bcl-2 inhibitor Navitoclax results in the reduction of metastases in tumor bearing mice, treatment with the Mcl-1 inhibitor S63845 leads to complete elimination of senescent tumor cells and metastases. These findings provide insights on the mechanism by which senescent tumor cells survive and reveal a vulnerability that can be exploited for cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/genética , Senescencia Celular/genética , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transcriptoma
5.
Science ; 374(6564): 216-224, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34618582

RESUMEN

The microbiota comprises the microorganisms that live in close contact with the host, with mutual benefit for both counterparts. The contribution of the gut microbiota to the emergence of castration-resistant prostate cancer (CRPC) has not yet been addressed. We found that androgen deprivation in mice and humans promotes the expansion of defined commensal microbiota that contributes to the onset of castration resistance in mice. Specifically, the intestinal microbial community in mice and patients with CRPC was enriched for species capable of converting androgen precursors into active androgens. Ablation of the gut microbiota by antibiotic therapy delayed the emergence of castration resistance even in immunodeficient mice. Fecal microbiota transplantation (FMT) from CRPC mice and patients rendered mice harboring prostate cancer resistant to castration. In contrast, tumor growth was controlled by FMT from hormone-sensitive prostate cancer patients and Prevotella stercorea administration. These results reveal that the commensal gut microbiota contributes to endocrine resistance in CRPC by providing an alternative source of androgens.


Asunto(s)
Andrógenos/biosíntesis , Bacterias/metabolismo , Microbioma Gastrointestinal/fisiología , Interacciones Microbiota-Huesped , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/microbiología , Anciano , Anciano de 80 o más Años , Antagonistas de Andrógenos/uso terapéutico , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Línea Celular Tumoral , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Neoplasias Experimentales , Prevotella/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Simbiosis , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Cancer Cell ; 39(1): 68-82.e9, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33186519

RESUMEN

Metastases account for most cancer-related deaths, yet the mechanisms underlying metastatic spread remain poorly understood. Recent evidence demonstrates that senescent cells, while initially restricting tumorigenesis, can induce tumor progression. Here, we identify the metalloproteinase inhibitor TIMP1 as a molecular switch that determines the effects of senescence in prostate cancer. Senescence driven either by PTEN deficiency or chemotherapy limits the progression of prostate cancer in mice. TIMP1 deletion allows senescence to promote metastasis, and elimination of senescent cells with a senolytic BCL-2 inhibitor impairs metastasis. Mechanistically, TIMP1 loss reprograms the senescence-associated secretory phenotype (SASP) of senescent tumor cells through activation of matrix metalloproteinases (MMPs). Loss of PTEN and TIMP1 in prostate cancer is frequent and correlates with resistance to docetaxel and worst clinical outcomes in patients treated in an adjuvant setting. Altogether, these findings provide insights into the dual roles of tumor-associated senescence and can potentially impact the treatment of prostate cancer.


Asunto(s)
Docetaxel/administración & dosificación , Eliminación de Gen , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/patología , Inhibidor Tisular de Metaloproteinasa-1/genética , Animales , Senescencia Celular/efectos de los fármacos , Docetaxel/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Metaloproteinasas de la Matriz/metabolismo , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Células PC-3 , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo
7.
J Clin Invest ; 130(5): 2435-2450, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32250342

RESUMEN

The mechanisms by which prostate cancer shifts from an indolent castration-sensitive phenotype to lethal castration-resistant prostate cancer (CRPC) are poorly understood. Identification of clinically relevant genetic alterations leading to CRPC may reveal potential vulnerabilities for cancer therapy. Here we find that CUB domain-containing protein 1 (CDCP1), a transmembrane protein that acts as a substrate for SRC family kinases (SFKs), is overexpressed in a subset of CRPC. Notably, CDCP1 cooperates with the loss of the tumor suppressor gene PTEN to promote the emergence of metastatic prostate cancer. Mechanistically, we find that androgens suppress CDCP1 expression and that androgen deprivation in combination with loss of PTEN promotes the upregulation of CDCP1 and the subsequent activation of the SRC/MAPK pathway. Moreover, we demonstrate that anti-CDCP1 immunoliposomes (anti-CDCP1 ILs) loaded with chemotherapy suppress prostate cancer growth when administered in combination with enzalutamide. Thus, our study identifies CDCP1 as a powerful driver of prostate cancer progression and uncovers different potential therapeutic strategies for the treatment of metastatic prostate tumors.


Asunto(s)
Antígenos de Neoplasias/biosíntesis , Moléculas de Adhesión Celular/biosíntesis , Regulación Neoplásica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Neoplasias de la Próstata/metabolismo , Regulación hacia Arriba , Animales , Antígenos de Neoplasias/genética , Benzamidas , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Drosophila melanogaster , Humanos , Liposomas , Masculino , Nitrilos , Fosfohidrolasa PTEN/biosíntesis , Fosfohidrolasa PTEN/genética , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
8.
Cell Death Differ ; 27(4): 1186-1199, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31570853

RESUMEN

Oncogene addiction postulates that the survival and growth of certain tumor cells is dependent upon the activity of one oncogene, despite their multiple genetic and epigenetic abnormalities. This phenomenon provides a foundation for molecular targeted therapy and a rationale for oncogene-based stratification. We have previously reported that the Promyelocytic Leukemia protein (PML) is upregulated in triple negative breast cancer (TNBC) and it regulates cancer-initiating cell function, thus suggesting that this protein can be therapeutically targeted in combination with PML-based stratification. However, the effects of PML perturbation on the bulk of tumor cells remained poorly understood. Here we demonstrate that TNBC cells are addicted to the expression of this nuclear protein. PML inhibition led to a remarkable growth arrest combined with features of senescence in vitro and in vivo. Mechanistically, the growth arrest and senescence were associated to a decrease in MYC and PIM1 kinase levels, with the subsequent accumulation of CDKN1B (p27), a trigger of senescence. In line with this notion, we found that PML is associated to the promoter regions of MYC and PIM1, consistent with their direct correlation in breast cancer specimens. Altogether, our results provide a feasible explanation for the functional similarities of MYC, PIM1, and PML in TNBC and encourage further study of PML targeting strategies for the treatment of this breast cancer subtype.


Asunto(s)
Senescencia Celular , Proteína de la Leucemia Promielocítica/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Proliferación Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Silenciador del Gen , Humanos , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo
9.
Cell Rep ; 28(8): 2156-2168.e5, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31433989

RESUMEN

Tumor-associated macrophages (TAMs) represent a major component of the tumor microenvironment supporting tumorigenesis. TAMs re-education has been proposed as a strategy to promote tumor inhibition. However, whether this approach may work in prostate cancer is unknown. Here we find that Pten-null prostate tumors are strongly infiltrated by TAMs expressing C-X-C chemokine receptor type 2 (CXCR2), and activation of this receptor through CXCL2 polarizes macrophages toward an anti-inflammatory phenotype. Notably, pharmacological blockade of CXCR2 receptor by a selective antagonist promoted the re-education of TAMs toward a pro-inflammatory phenotype. Strikingly, CXCR2 knockout monocytes infused in Ptenpc-/-; Trp53pc-/- mice differentiated in tumor necrosis factor alpha (TNF-α)-releasing pro-inflammatory macrophages, leading to senescence and tumor inhibition. Mechanistically, PTEN-deficient tumor cells are vulnerable to TNF-α-induced senescence, because of an increase of TNFR1. Our results identify TAMs as targets in prostate cancer and describe a therapeutic strategy based on CXCR2 blockade to harness anti-tumorigenic potential of macrophages against this disease.


Asunto(s)
Senescencia Celular , Macrófagos/patología , Neoplasias de la Próstata/patología , Receptores de Interleucina-8B/antagonistas & inhibidores , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Polaridad Celular , Quimiocina CXCL2/administración & dosificación , Quimiocina CXCL2/farmacología , Humanos , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Estadificación de Neoplasias , Pruebas de Neutralización , Fosfohidrolasa PTEN/metabolismo , Receptores de Interleucina-8B/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
11.
Nat Genet ; 50(2): 219-228, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29335542

RESUMEN

The mechanisms by which mitochondrial metabolism supports cancer anabolism remain unclear. Here, we found that genetic and pharmacological inactivation of pyruvate dehydrogenase A1 (PDHA1), a subunit of the pyruvate dehydrogenase complex (PDC), inhibits prostate cancer development in mouse and human xenograft tumor models by affecting lipid biosynthesis. Mechanistically, we show that in prostate cancer, PDC localizes in both the mitochondria and the nucleus. Whereas nuclear PDC controls the expression of sterol regulatory element-binding transcription factor (SREBF)-target genes by mediating histone acetylation, mitochondrial PDC provides cytosolic citrate for lipid synthesis in a coordinated manner, thereby sustaining anabolism. Additionally, we found that PDHA1 and the PDC activator pyruvate dehydrogenase phosphatase 1 (PDP1) are frequently amplified and overexpressed at both the gene and protein levels in prostate tumors. Together, these findings demonstrate that both mitochondrial and nuclear PDC sustain prostate tumorigenesis by controlling lipid biosynthesis, thus suggesting this complex as a potential target for cancer therapy.


Asunto(s)
Compartimento Celular/fisiología , Lipogénesis , Neoplasias de la Próstata/metabolismo , Piruvato Deshidrogenasa (Lipoamida)/genética , Complejo Piruvato Deshidrogenasa/fisiología , Animales , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Células Cultivadas , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/patología , Humanos , Lipogénesis/genética , Masculino , Ratones , Ratones Noqueados , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Procesamiento Proteico-Postraduccional/genética , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo
13.
Nature ; 547(7661): 109-113, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28658205

RESUMEN

Activation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs that sustain cancer cell growth and proliferation. Here we show that mechanistic target of rapamycin complex 1 (mTORC1) regulates polyamine dynamics, a metabolic route that is essential for oncogenicity. By using integrative metabolomics in a mouse model and human biopsies of prostate cancer, we identify alterations in tumours affecting the production of decarboxylated S-adenosylmethionine (dcSAM) and polyamine synthesis. Mechanistically, this metabolic rewiring stems from mTORC1-dependent regulation of S-adenosylmethionine decarboxylase 1 (AMD1) stability. This novel molecular regulation is validated in mouse and human cancer specimens. AMD1 is upregulated in human prostate cancer with activated mTORC1. Conversely, samples from a clinical trial with the mTORC1 inhibitor everolimus exhibit a predominant decrease in AMD1 immunoreactivity that is associated with a decrease in proliferation, in line with the requirement of dcSAM production for oncogenicity. These findings provide fundamental information about the complex regulatory landscape controlled by mTORC1 to integrate and translate growth signals into an oncogenic metabolic program.


Asunto(s)
Adenosilmetionina Descarboxilasa/metabolismo , Complejos Multiproteicos/metabolismo , Poliaminas/metabolismo , Neoplasias de la Próstata/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adenosilmetionina Descarboxilasa/inmunología , Animales , Proliferación Celular , Activación Enzimática , Everolimus/uso terapéutico , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Metabolómica , Ratones , Complejos Multiproteicos/antagonistas & inhibidores , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Estabilidad Proteica , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
14.
Aging (Albany NY) ; 8(12): 3223-3240, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27922821

RESUMEN

Cellular senescence is a stable cell cycle arrest that is the causative process of aging. The PI3K/AKT/mTOR pathway is implicated in the control of cellular senescence and inhibitors of this pathway have been successfully used for life span prolongation experiments in mammals. PTEN is the major regulator of the PI3K/AKT/mTOR pathway and loss of PTEN promotes a senescence response termed PICS. Here we report a novel-screening assay, for the identification of compounds that block different types of senescence response. By testing a library of more than 3000 natural and chemical compounds in PTEN deficient cells we have found that an extract from Salvia haenkei (SH), a native plant of Bolivia is a potent inhibitor of PICS. SH also decreases replicative and UV-mediated senescence in human primary fibroblasts and in a model of in vitro reconstructed human epidermis. Mechanistically, SH treatment affects senescence driven by UV by interfering with IL1-α signalling. Pre-clinical and clinical testing of this extract by performing toxicity and irritability evaluation in vitro also demonstrate the safety of SH extract for clinical use as anti-aging skin treatment.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Salvia/química , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Células Cultivadas , Senescencia Celular/efectos de la radiación , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Peróxido de Hidrógeno/metabolismo , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Ratones , Estrés Oxidativo , Extractos Vegetales/química
15.
Nat Commun ; 7: 13719, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27941799

RESUMEN

Activation of NOTCH signalling is associated with advanced prostate cancer and treatment resistance in prostate cancer patients. However, the mechanism that drives NOTCH activation in prostate cancer remains still elusive. Moreover, preclinical evidence of the therapeutic efficacy of NOTCH inhibitors in prostate cancer is lacking. Here, we provide evidence that PTEN loss in prostate tumours upregulates the expression of ADAM17, thereby activating NOTCH signalling. Using prostate conditional inactivation of both Pten and Notch1 along with preclinical trials carried out in Pten-null prostate conditional mouse models, we demonstrate that Pten-deficient prostate tumours are addicted to the NOTCH signalling. Importantly, we find that pharmacological inhibition of γ-secretase promotes growth arrest in both Pten-null and Pten/Trp53-null prostate tumours by triggering cellular senescence. Altogether, our findings describe a novel pro-tumorigenic network that links PTEN loss to ADAM17 and NOTCH signalling, thus providing the rational for the use of γ-secretase inhibitors in advanced prostate cancer patients.


Asunto(s)
Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Notch/antagonistas & inhibidores , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Senescencia Celular/efectos de los fármacos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Humanos , Masculino , Ratones , Fosfohidrolasa PTEN/metabolismo , Neoplasias de la Próstata/patología , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Tetrahidronaftalenos/uso terapéutico , Regulación hacia Arriba , Valina/análogos & derivados , Valina/uso terapéutico
16.
Nat Commun ; 6: 7227, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26085373

RESUMEN

Enhancement of cellular senescence in tumours triggers a stable cell growth arrest and activation of an antitumour immune response that can be exploited for cancer therapy. Currently, there are only a limited number of targeted therapies that act by increasing senescence in cancers, but the majority of them are not selective and also target healthy cells. Here we developed a chemogenomic screening to identify compounds that enhance senescence in PTEN-deficient cells without affecting normal cells. By using this approach, we identified casein kinase 2 (CK2) as a pro-senescent target. Mechanistically, we show that Pten loss increases CK2 levels by activating STAT3. CK2 upregulation in Pten null tumours affects the stability of Pml, an essential regulator of senescence. However, CK2 inhibition stabilizes Pml levels enhancing senescence in Pten null tumours. Taken together, our screening strategy has identified a novel STAT3-CK2-PML network that can be targeted for pro-senescence therapy for cancer.


Asunto(s)
Quinasa de la Caseína II/antagonistas & inhibidores , Senescencia Celular/efectos de los fármacos , Terapia Molecular Dirigida , Naftiridinas/uso terapéutico , Fosfohidrolasa PTEN/deficiencia , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Quinasa de la Caseína II/metabolismo , Evaluación Preclínica de Medicamentos , Femenino , Células HCT116 , Humanos , Masculino , Ratones Transgénicos , Naftiridinas/farmacología , Proteínas Nucleares/metabolismo , Fenazinas , Proteína de la Leucemia Promielocítica , ARN Interferente Pequeño , Factor de Transcripción STAT3/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
17.
Cell Rep ; 9(1): 75-89, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25263564

RESUMEN

Prosenescence therapy has recently emerged as a novel therapeutic approach for treating cancer. However, this concept is challenged by conflicting evidence showing that the senescence-associated secretory phenotype (SASP) of senescent tumor cells can have pro- as well as antitumorigenic effects. Herein, we report that, in Pten-null senescent tumors, activation of the Jak2/Stat3 pathway establishes an immunosuppressive tumor microenvironment that contributes to tumor growth and chemoresistance. Activation of the Jak2/Stat3 pathway in Pten-null tumors is sustained by the downregulation of the protein tyrosine phosphatase PTPN11/SHP2, providing evidence for the existence of a novel PTEN/SHP2 axis. Importantly, treatment with docetaxel in combination with a JAK2 inhibitor reprograms the SASP and improves the efficacy of docetaxel-induced senescence by triggering a strong antitumor immune response in Pten-null tumors. Altogether, these data demonstrate that immune surveillance of senescent tumor cells can be suppressed in specific genetic backgrounds but also evoked by pharmacological treatments.


Asunto(s)
Antineoplásicos/farmacología , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/inmunología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/inmunología , Animales , Senescencia Celular/inmunología , Citocinas/inmunología , Docetaxel , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transducción de Señal , Taxoides/farmacología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...