Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Hum Neurosci ; 18: 1363098, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812473

RESUMEN

Introduction: Functional connectivity (FC) is defined in terms of temporal correlations between physiological signals, which mainly depend upon structural (axonal) connectivity; it is commonly studied using functional magnetic resonance imaging (fMRI). Interhemispheric FC appears mostly supported by the corpus callosum (CC), although several studies investigating this aspect have not provided conclusive evidence. In this context, patients in whom the CC was resected for therapeutic reasons (split-brain patients) provide a unique opportunity for research into this issue. The present study was aimed at investigating with resting-state fMRI the interhemispheric FC in six epileptic patients who have undergone surgical resection of the CC. Methods: The analysis was performed using fMRI of the Brain Software Library; the evaluation of interhemispheric FC and the recognition of the resting-state networks (RSNs) were performed using probabilistic independent component analysis. Results: Generally, bilateral brain activation was often observed in primary sensory RSNs, while in the associative areas, such as those composing the default mode and fronto-parietal networks, the activation was often unilateral. Discussion: These results suggest that even in the absence of the CC, some interhemispheric communication is still present. This residual FC might be supported through extra-callosal pathways that are likely subcortical, making it possible for some interhemispheric integration. Further studies are needed to confirm these conclusions.

2.
Health Phys ; 107(6): 534-41, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25353239

RESUMEN

The current Boron Neutron Capture Therapy (BNCT) experiments performed at the University of Pavia, Italy, are focusing on the in vivo irradiations of small animals (rats and mice) in order to evaluate the effectiveness of BNCT in the treatment of diffused lung tumors. After the irradiation, the animals are manipulated, which requires an evaluation of the residual radioactivity induced by neutron activation and the relative radiological risk assessment to guarantee the radiation protection of the workers. The induced activity in the irradiated animals was measured by high-resolution open geometry gamma spectroscopy and compared with values obtained by Monte Carlo simulation. After an irradiation time of 15 min in a position where the in-air thermal flux is about 1.2 × 10(10) cm(-2) s(-1), the specific activity induced in the body of the animal is mainly due to 24Na, 38Cl, 42K, 56Mn, 27Mg and 49Ca; it is approximately 540 Bq g(-1) in the rat and around 2,050 Bq g(-1) in the mouse. During the irradiation, the animal body (except the lung region) is housed in a 95% enriched 6Li shield; the primary radioisotopes produced inside the shield by the neutron irradiation are 3H by the 6Li capture reaction and 18F by the reaction sequence 6Li(n,α)3H → 16O(t,n)18F. The specific activities of these products are 3.3 kBq g(-1) and 880 Bq g(-1), respectively.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Rayos gamma , Neutrones , Reactores Nucleares , Protección Radiológica , Animales , Neoplasias Pulmonares/radioterapia , Ratones , Método de Montecarlo , Planificación de la Radioterapia Asistida por Computador , Ratas , Efectividad Biológica Relativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...