Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Med ; 29(6): 1487-1499, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37291212

RESUMEN

Cannabis use disorder (CUD) is widespread, and there is no pharmacotherapy to facilitate its treatment. AEF0117, the first of a new pharmacological class, is a signaling-specific inhibitor of the cannabinoid receptor 1 (CB1-SSi). AEF0117 selectively inhibits a subset of intracellular effects resulting from Δ9-tetrahydrocannabinol (THC) binding without modifying behavior per se. In mice and non-human primates, AEF0117 decreased cannabinoid self-administration and THC-related behavioral impairment without producing significant adverse effects. In single-ascending-dose (0.2 mg, 0.6 mg, 2 mg and 6 mg; n = 40) and multiple-ascending-dose (0.6 mg, 2 mg and 6 mg; n = 24) phase 1 trials, healthy volunteers were randomized to ascending-dose cohorts (n = 8 per cohort; 6:2 AEF0117 to placebo randomization). In both studies, AEF0117 was safe and well tolerated (primary outcome measurements). In a double-blind, placebo-controlled, crossover phase 2a trial, volunteers with CUD were randomized to two ascending-dose cohorts (0.06 mg, n = 14; 1 mg, n = 15). AEF0117 significantly reduced cannabis' positive subjective effects (primary outcome measurement, assessed by visual analog scales) by 19% (0.06 mg) and 38% (1 mg) compared to placebo (P < 0.04). AEF0117 (1 mg) also reduced cannabis self-administration (P < 0.05). In volunteers with CUD, AEF0117 was well tolerated and did not precipitate cannabis withdrawal. These data suggest that AEF0117 is a safe and potentially efficacious treatment for CUD.ClinicalTrials.gov identifiers: NCT03325595 , NCT03443895 and NCT03717272 .


Asunto(s)
Cannabis , Alucinógenos , Abuso de Marihuana , Síndrome de Abstinencia a Sustancias , Animales , Ratones , Método Doble Ciego , Dronabinol/efectos adversos , Alucinógenos/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico
2.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36901924

RESUMEN

Stressful events trigger a set of complex biological responses which follow a bell-shaped pattern. Low-stress conditions have been shown to elicit beneficial effects, notably on synaptic plasticity together with an increase in cognitive processes. In contrast, overly intense stress can have deleterious behavioral effects leading to several stress-related pathologies such as anxiety, depression, substance use, obsessive-compulsive and stressor- and trauma-related disorders (e.g., post-traumatic stress disorder or PTSD in the case of traumatic events). Over a number of years, we have demonstrated that in response to stress, glucocorticoid hormones (GCs) in the hippocampus mediate a molecular shift in the balance between the expression of the tissue plasminogen activator (tPA) and its own inhibitor plasminogen activator inhibitor-1 (PAI-1) proteins. Interestingly, a shift in favor of PAI-1 was responsible for PTSD-like memory induction. In this review, after describing the biological system involving GCs, we highlight the key role of tPA/PAI-1 imbalance observed in preclinical and clinical studies associated with the emergence of stress-related pathological conditions. Thus, tPA/PAI-1 protein levels could be predictive biomarkers of the subsequent onset of stress-related disorders, and pharmacological modulation of their activity could be a potential new therapeutic approach for these debilitating conditions.


Asunto(s)
Trastornos Mentales , Activador de Tejido Plasminógeno , Humanos , Activador de Tejido Plasminógeno/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Glucocorticoides
3.
Mol Cell Neurosci ; 121: 103750, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35697176

RESUMEN

The central serotonin2B receptor (5-HT2BR) modulates 5-HT and dopamine (DA) neuronal function in the mammalian brain and has been suggested as a potential target for the treatment of neuropsychiatric disorders involving derangements of these monoamine systems, such as schizophrenia, cocaine abuse and dependence and major depressive disorder. Studies in rats and mice yielded contrasting results on the control of 5-HT/DA networks by 5-HT2BRs, thereby leading to opposite views on the therapeutic potential of 5-HT2BR agents for treating the above disorders. These discrepancies may result from anatomo-functional differences related to a different cellular location of 5-HT2BRs in rat and mouse brain. Using immunohistochemistry, we assessed this hypothesis by examining the expression of 5-HT2BRs in 5-HT and GABAergic neurons of rats and mice within different subregions of the dorsal raphe nucleus (DRN), currently considered as the main site of action of 5-HT2B agents. Likewise, using in vivo microdialysis, we examined their functional relevance in the control of DRN 5-HT outflow, a surrogate index of 5-HT neuronal activity. In the DRN of both species, 5-HT2BRs are expressed in 5-HT cells expressing tryptophan hydroxylase 2 (TPH2), in GABAergic cells expressing glutamic acid decarboxylase 67 (GAD67), and in cells expressing both markers (GAD67 & TPH2; i.e., GABA-expressing 5-HT neurons). The proportion of 5-HT2BR-positive cells expressing only TPH2 was significantly larger in mouse than in rat DRN, whereas the opposite holds true for the expression in cells expressing GAD67 & TPH2. No major species differences were found in the dorsal and ventral subregions. In contrast, the lateral subregion exhibited large differences, with a predominant expression of 5-HT2BRs in TPH2-positive cells in mice (67.2 vs 19.9 % in rats), associated with a lower expression in GAD67 & TPH2 cells (7.9 % in mice vs 41.5 % in rats). Intra-DRN (0.1 µM) administration of the preferential 5-HT2BR agonist BW 723C86 decreased and increased DRN 5-HT outflow in rats and mice respectively, both effects being prevented by the intra-DRN perfusion of the selective 5-HT2BR antagonist RS 127445 (0.1 µM). Altogether, these results show the existence of anatomical differences in the cellular expression of 5-HT2BRs in the rat and mouse DRN, which translate into an opposite control of 5-HT outflow. Also, they highlight the relevance of the subset of GAD67-positive 5-HT neurons as a key factor responsible for the functional differences between rats and mice in terms of 5-HT neuronal activity modulation.


Asunto(s)
Núcleo Dorsal del Rafe , Receptor de Serotonina 5-HT2B , Neuronas Serotoninérgicas , Animales , Núcleo Dorsal del Rafe/metabolismo , Ratones , Ratas , Receptor de Serotonina 5-HT2B/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/farmacología
4.
Mol Cell Neurosci ; 119: 103705, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35158060

RESUMEN

Down syndrome (DS) or Trisomy 21 is the most common genetic cause of mental retardation with severe learning and memory deficits. DS is due to the complete or partial triplication of human chromosome 21 (HSA21) triggering gene overexpression and protein synthesis alterations responsible for a plethora of mental and physical phenotypes. Among the diverse brain target systems that affect hippocampal-dependent learning and memory deficit impairments in DS, the upregulation of the endocannabinoid system (ECS), and notably the overexpression of the cannabinoid type-1 receptor (CB1), seems to play a major role. Combining various protein and gene expression targeted approaches using western blot, qRT-PCR and FISH techniques, we investigated the expression pattern of ECS components in the hippocampus (HPC) of male Ts65Dn mice. Among all the molecules that constitute the ECS, we found that the expression of the CB1 is altered in the HPC of Ts65Dn mice. CB1 distribution is differentially segregated between the dorsal and ventral part of the HPC and within the different cell populations that compose the HPC. CB1 expression is upregulated in GABAergic neurons of Ts65Dn mice whereas it is downregulated in glutamatergic neurons. These results highlight a complex regulation of the CB1 encoding gene (Cnr1) in Ts65Dn mice that could open new therapeutic solutions for this syndrome.


Asunto(s)
Cannabinoides , Síndrome de Down , Animales , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo
5.
J Neuroendocrinol ; 34(2): e13034, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34486765

RESUMEN

Pregnenolone is a steroid with specific characteristics, being the first steroid to be synthesised from cholesterol at all sites of steroidogenesis, including the brain. For many years, pregnenolone was defined as an inactive precursor of all steroids because no specific target had been discovered. However, over the last decade, it has become a steroid of interest because it has been recognised as being a biomarker for brain-related disorders through the development of metabolomic approaches and advanced analytical methods. In addition, physiological roles for pregnenolone emerged when specific targets were discovered. In this review, we highlight the discovery of the selective interaction of pregnenolone with the type-1 cannabinoid receptor (CB1R). After describing the specific characteristic of CB1Rs, we discuss the newly discovered mechanisms of their regulation by pregnenolone. In particular, we describe the action of pregnenolone as a negative allosteric modulator and a specific signalling inhibitor of the CB1R. These particular characteristics of pregnenolone provide a great strategic opportunity for therapeutic development in CB1-related disorders. Finally, we outline new perspectives using innovative genetic tools for the discovery of original regulatory mechanisms of pregnenolone on CB1-related functions.


Asunto(s)
Neuroesteroides , Pregnenolona , Receptor Cannabinoide CB1/genética , Receptores de Cannabinoides , Transducción de Señal
6.
Neuropharmacology ; 180: 108309, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32956675

RESUMEN

Serotonin2B receptor (5-HT2BR) antagonists inhibit cocaine-induced hyperlocomotion independently of changes of accumbal dopamine (DA) release. Given the tight relationship between accumbal DA activity and locomotion, and the inhibitory role of medial prefrontal cortex (mPFC) DA on subcortical DA neurotransmission and DA-dependent behaviors, it has been suggested that the suppressive effect of 5-HT2BR antagonists on cocaine-induced hyperlocomotion may result from an activation of mPFC DA outflow which would subsequently inhibit accumbal DA neurotransmission. Here, we tested this hypothesis by means of the two selective 5-HT2BR antagonists, RS 127445 and LY 266097, using a combination of neurochemical, behavioral and cellular approaches in male rats. The intraperitoneal (i.p.) administration of RS 127445 (0.16 mg/kg) or LY 266097 (0.63 mg/kg) potentiated cocaine (10 mg/kg, i.p.)-induced mPFC DA outflow. The suppressant effect of RS 127445 on cocaine-induced hyperlocomotion was no longer observed in rats with local 6-OHDA lesions in the mPFC. Also, RS 127445 blocked cocaine-induced changes of accumbal glycogen synthase kinase (GSK) 3ß phosphorylation, a postsynaptic cellular marker of DA neurotransmission. Finally, in keeping with the location of 5-HT2BRs on GABAergic interneurons in the dorsal raphe nucleus (DRN), the intra-DRN perfusion of the GABAAR antagonist bicuculline (100 µM) prevented the effect of the systemic or local (1 µM, intra-DRN) administration of RS 127445 on cocaine-induced mPFC DA outflow. Likewise, intra-DRN bicuculline injection (0.1 µg/0.2 µl) prevented the effect of the systemic RS 127445 administration on cocaine-induced hyperlocomotion and GSK3ß phosphorylation. These results show that DRN 5-HT2BR blockade suppresses cocaine-induced hyperlocomotion by potentiation of cocaine-induced DA outflow in the mPFC and the subsequent inhibition of accumbal DA neurotransmission.


Asunto(s)
Corteza Cerebral/metabolismo , Dopamina/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Locomoción/efectos de los fármacos , Núcleo Accumbens/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Animales , Corteza Cerebral/efectos de los fármacos , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Núcleo Dorsal del Rafe/efectos de los fármacos , Locomoción/fisiología , Masculino , Núcleo Accumbens/efectos de los fármacos , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2B/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
7.
J Neurosci Methods ; 332: 108543, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31830543

RESUMEN

BACKGROUND: Phosphorylation by protein kinases is a fundamental molecular process involved in the regulation of signaling activities in living organisms. Understanding this complex network of phosphorylation, especially phosphoproteins, is a necessary step for grasping the basis of cellular pathophysiology. Studying brain intracellular signaling is a particularly complex task due to the heterogeneous complex nature of the brain tissue, which consists of many embedded structures. NEW METHOD: Overcoming this degree of complexity requires a technology with a high throughput and economical in the amount of biological material used, so that a large number of signaling pathways may be analyzed in a large number of samples. We have turned to Alpha (Amplified Luminescent Proximity Homogeneous Assay) technology. COMPARISON WITH EXISTING METHOD: Western blot is certainly the most commonly used method to measure the phosphorylation state of proteins. Even though Western blot is an accurate and reliable method for analyzing modifications of proteins, it is a time-consuming and large amounts of samples are required. Those two parameters are critical when the goal of the research is to comprehend multi-signaling proteic events so as to analyze several targets from small brain areas. RESULT: Here we demonstrate that Alpha technology is particularly suitable for studying brain signaling pathways by allowing rapid, sensitive, reproducible and semi-quantitative detection of phosphoproteins from individual mouse brain tissue homogenates and from cell fractionation and synaptosomal preparations of mouse hippocampus. CONCLUSION: Alpha technology represents a major experimental step forward in unraveling the brain phosphoprotein-related molecular mechanisms involved in brain-related disorders.


Asunto(s)
Fosfoproteínas , Transducción de Señal , Animales , Western Blotting , Encéfalo/metabolismo , Ratones , Fosfoproteínas/metabolismo , Fosforilación
8.
Neurobiol Dis ; 125: 92-106, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30685352

RESUMEN

Intellectual disability is the most limiting hallmark of Down syndrome, for which there is no gold-standard clinical treatment yet. The endocannabinoid system is a widespread neuromodulatory system involved in multiple functions including learning and memory processes. Alterations of this system contribute to the pathogenesis of several neurological and neurodevelopmental disorders. However, the involvement of the endocannabinoid system in the pathogenesis of Down syndrome has not been explored before. We used the best-characterized preclinical model of Down syndrome, the segmentally trisomic Ts65Dn model. In male Ts65Dn mice, cannabinoid type-1 receptor (CB1R) expression was enhanced and its function increased in hippocampal excitatory terminals. Knockdown of CB1R in the hippocampus of male Ts65Dn mice restored hippocampal-dependent memory. Concomitant with this result, pharmacological inhibition of CB1R restored memory deficits, hippocampal synaptic plasticity and adult neurogenesis in the subgranular zone of the dentate gyrus. Notably, the blockade of CB1R also normalized hippocampal-dependent memory in female Ts65Dn mice. To further investigate the mechanisms involved, we used a second transgenic mouse model overexpressing a single gene candidate for Down syndrome cognitive phenotypes, the dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A). CB1R pharmacological blockade similarly improved cognitive performance, synaptic plasticity and neurogenesis in transgenic male Dyrk1A mice. Our results identify CB1R as a novel druggable target potentially relevant for the improvement of cognitive deficits associated with Down syndrome.


Asunto(s)
Encéfalo/efectos de los fármacos , Antagonistas de Receptores de Cannabinoides/farmacología , Cognición/efectos de los fármacos , Síndrome de Down/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Animales , Encéfalo/metabolismo , Disfunción Cognitiva/genética , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Neurogénesis/efectos de los fármacos , Fenotipo , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/efectos de los fármacos , Rimonabant/farmacología
9.
Mol Psychiatry ; 24(2): 312-320, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29507372

RESUMEN

The hippocampus is the main locus for adult dentate gyrus (DG) neurogenesis. A number of studies have shown that aberrant DG neurogenesis correlates with many neuropsychiatric disorders, including drug addiction. Although clear causal relationships have been established between DG neurogenesis and memory dysfunction or mood-related disorders, evidence of the causal role of DG neurogenesis in drug-seeking behaviors has not been established. Here we assessed the role of new DG neurons in cocaine self-administration using an inducible transgenic approach that selectively depletes adult DG neurogenesis. Our results show that transgenic mice with decreased adult DG neurogenesis exhibit increased motivation to self-administer cocaine and a higher seeking response to cocaine-related cues. These results identify adult hippocampal neurogenesis as a key factor in vulnerability to cocaine addiction.


Asunto(s)
Trastornos Relacionados con Cocaína/fisiopatología , Giro Dentado/metabolismo , Comportamiento de Búsqueda de Drogas/fisiología , Animales , Cocaína/metabolismo , Señales (Psicología) , Hipocampo/fisiopatología , Masculino , Memoria/fisiología , Ratones , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas , Autoadministración
10.
Exp Neurol ; 311: 57-66, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30257183

RESUMEN

The central serotonin2B receptor (5-HT2BR) is a well-established modulator of dopamine (DA) neuron activity in the rodent brain. Recent studies in rats have shown that the effect of 5-HT2BR antagonists on accumbal and medial prefrontal cortex (mPFC) DA outflow results from a primary action in the dorsal raphe nucleus (DRN), where they activate 5-HT neurons innervating the mPFC. Although the mechanisms underlying this interaction remain largely unknown, data in the literature suggest the involvement of DRN GABAergic interneurons in the control of 5-HT activity. The present study examined this hypothesis using in vivo (intracerebral microdialysis) and in vitro (immunohistochemistry coupled to reverse transcription-polymerase chain reaction) experimental approaches in rats. Intraperitoneal (0.16 mg/kg) or intra-DRN (1 µM) administration of the selective 5-HT2BR antagonist RS 127445 increased 5-HT outflow in both the DRN and the mPFC, these effects being prevented by the intra-DRN perfusion of the GABAA antagonist bicuculline (100 µM), as well as by the subcutaneous (0.16 mg/kg) or the intra-DRN (0.1 µM) administration of the selective 5-HT1AR antagonist WAY 100635. The increase in DRN 5-HT outflow induced by the intra-DRN administration of the selective 5-HT reuptake inhibitor citalopram (0.1 µM) was potentiated by the intra-DRN administration (0.5 µM) of RS 127445 only in the absence of bicuculline perfusion. Finally, in vitro experiments revealed the presence of the 5-HT2BR mRNA on DRN GABAergic interneurons. Altogether, these results show that, in the rat DRN, 5-HT2BRs are located on GABAergic interneurons, and exert a tonic inhibitory control on 5-HT neurons innervating the mPFC.


Asunto(s)
Núcleo Dorsal del Rafe/metabolismo , Neuronas GABAérgicas/metabolismo , Inhibición Neural/fisiología , Receptor de Serotonina 5-HT2B/metabolismo , Neuronas Serotoninérgicas/metabolismo , Animales , Núcleo Dorsal del Rafe/efectos de los fármacos , Antagonistas de Receptores de GABA-A/administración & dosificación , Neuronas GABAérgicas/efectos de los fármacos , Inyecciones Intraventriculares , Masculino , Inhibición Neural/efectos de los fármacos , Pirimidinas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Neuronas Serotoninérgicas/efectos de los fármacos , Serotonina/metabolismo , Antagonistas de la Serotonina/administración & dosificación , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Ácido gamma-Aminobutírico/metabolismo
11.
Neuropharmacology ; 89: 375-81, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25446572

RESUMEN

The serotonin(2C) receptor (5-HT(2C)R) is known to control dopamine (DA) neuron function by modulating DA neuronal firing and DA exocytosis at terminals. Recent studies assessing the influence of 5-HT(2C)Rs on cocaine-induced neurochemical and behavioral responses have shown that 5-HT2CRs can also modulate mesoaccumbens DA pathway activity at post-synaptic level, by controlling DA transmission in the nucleus accumbens (NAc), independently of DA release itself. A similar mechanism has been proposed to occur at the level of the nigrostriatal DA system. Here, using in vivo microdialysis in freely moving rats and molecular approaches, we assessed this hypothesis by studying the influence of the 5-HT(2C)R agonist Ro 60-0175 on cocaine-induced responses in the striatum. The intraperitoneal (i.p.) administration of 1 mg/kg Ro 60-0175 had no effect on the increase in striatal DA outflow induced by cocaine (15 mg/kg, i.p.). Conversely, Ro 60-0175 inhibited cocaine-induced Fos immunoreactivity and phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine 75 residue in the striatum. Finally, the suppressant effect of Ro 60-0175 on cocaine-induced DARPP-32 phosphorylation was reversed by the selective 5-HT(2C)R antagonist SB 242084 (0.5 mg/kg, i.p.). In keeping with the key role of DARPP-32 in DA neurotransmission, our results demonstrate that 5-HT(2C)Rs are capable of modulating nigrostriatal DA pathway activity at post-synaptic level, by specifically controlling DA signaling in the striatum.


Asunto(s)
Cocaína/farmacología , Cuerpo Estriado/efectos de los fármacos , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Dopamina/metabolismo , Proteínas Oncogénicas v-fos/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Aminopiridinas/farmacología , Análisis de Varianza , Animales , Cuerpo Estriado/metabolismo , Etilaminas/farmacología , Indoles/farmacología , Masculino , Microdiálisis , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Agonistas de Receptores de Serotonina/farmacología , Factores de Tiempo
12.
Addict Biol ; 20(3): 445-57, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-24661380

RESUMEN

In keeping with its ability to control the mesoaccumbens dopamine (DA) pathway, the serotonin2C receptor (5-HT2C R) plays a key role in mediating the behavioral and neurochemical effects of drugs of abuse. Studies assessing the influence of 5-HT2C R agonists on cocaine-induced responses have suggested that 5-HT2C Rs can modulate mesoaccumbens DA pathway activity independently of accumbal DA release, thereby controlling DA transmission in the nucleus accumbens (NAc). In the present study, we assessed this hypothesis by studying the influence of the 5-HT2C R agonist Ro 60-0175 on cocaine-induced behavioral, neurochemical and molecular responses. The i.p. administration of 1 mg/kg Ro 60-0175 inhibited hyperlocomotion induced by cocaine (15 mg/kg, i.p.), had no effect on cocaine-induced DA outflow in the shell, and increased it in the core subregion of the NAc. Furthermore, Ro 60-0175 inhibited the late-onset locomotion induced by the subcutaneous administration of the DA-D2 R agonist quinpirole (0.5 mg/kg), as well as cocaine-induced increase in c-Fos immunoreactivity in NAc subregions. Finally, Ro 60-0175 inhibited cocaine-induced phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine residues in the NAc core, this effect being reversed by the selective 5-HT2C R antagonist SB 242084 (0.5 mg/kg, i.p.). Altogether, these findings demonstrate that 5-HT2C Rs are capable of modulating mesoaccumbens DA pathway activity at post-synaptic level by specifically controlling DA signaling in the NAc core subregion. In keeping with the tight relationship between locomotor activity and NAc DA function, this interaction could participate in the inhibitory control of cocaine-induced locomotor activity.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Núcleo Accumbens/metabolismo , Receptores de Serotonina 5-HT2/fisiología , Aminopiridinas/farmacología , Animales , Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Fosfoproteína 32 Regulada por Dopamina y AMPc/efectos de los fármacos , Etilaminas/farmacología , Indoles/farmacología , Locomoción/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Quinpirol/farmacología , Ratas Sprague-Dawley , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Transmisión Sináptica/efectos de los fármacos
13.
Science ; 343(6166): 94-8, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24385629

RESUMEN

Pregnenolone is considered the inactive precursor of all steroid hormones, and its potential functional effects have been largely uninvestigated. The administration of the main active principle of Cannabis sativa (marijuana), Δ(9)-tetrahydrocannabinol (THC), substantially increases the synthesis of pregnenolone in the brain via activation of the type-1 cannabinoid (CB1) receptor. Pregnenolone then, acting as a signaling-specific inhibitor of the CB1 receptor, reduces several effects of THC. This negative feedback mediated by pregnenolone reveals a previously unknown paracrine/autocrine loop protecting the brain from CB1 receptor overactivation that could open an unforeseen approach for the treatment of cannabis intoxication and addiction.


Asunto(s)
Encéfalo/efectos de los fármacos , Cannabis/toxicidad , Dronabinol/toxicidad , Pregnenolona/administración & dosificación , Pregnenolona/metabolismo , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Animales , Encéfalo/metabolismo , Antagonistas de Receptores de Cannabinoides/administración & dosificación , Masculino , Abuso de Marihuana/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Ratas Wistar
14.
Hippocampus ; 22(2): 292-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21049483

RESUMEN

New neurons are continuously produced in the adult dentate gyrus of the hippocampus. It has been shown that one of the functions of adult neurogenesis is to support spatial pattern separation, a process that transforms similar memories into nonoverlapping representations. This prompted us to investigate whether adult-born neurons are required for discriminating two contexts, i.e., for identifying a familiar environment and detect any changes introduced in it. We show that depleting adult-born neurons impairs the animal's ability to disambiguate two contexts after extensive training. These data suggest that the continuous production of new dentate neurons plays a crucial role in extracting and separating efficiently contextual representation in order to discriminate features within events.


Asunto(s)
Giro Dentado/citología , Giro Dentado/fisiología , Discriminación en Psicología/fisiología , Neurogénesis/fisiología , Neuronas/citología , Neuronas/fisiología , Células Madre Adultas/citología , Células Madre Adultas/fisiología , Animales , Inmunohistoquímica , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Proc Natl Acad Sci U S A ; 108(16): 6644-9, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21464314

RESUMEN

Adult neurogenesis is a process by which the brain produces new neurons once development has ceased. Adult hippocampal neurogenesis has been linked to the relational processing of spatial information, a role attributed to the contribution of newborn neurons to long-term potentiation (LTP). However, whether newborn neurons also influence long-term depression (LTD), and how synaptic transmission and plasticity are affected as they incorporate their network, remain to be determined. To address these issues, we took advantage of a genetic model in which a majority of adult-born neurons can be selectively ablated in the dentate gyrus (DG) and, most importantly, in which neurogenesis can be restored on demand. Using electrophysiological recordings, we show that selective reduction of adult-born neurons impairs synaptic transmission at medial perforant pathway synapses onto DG granule cells. Furthermore, LTP and LTD are largely compromised at these synapses, probably as a result of an increased induction threshold. Whereas the deficits in synaptic transmission and plasticity are completely rescued by restoring neurogenesis, these synapses regain their ability to express LTP much faster than their ability to express LTD. These results demonstrate that both LTP and LTD are influenced by adult neurogenesis. They also indicate that as newborn neurons integrate their network, the ability to express bidirectional synaptic plasticity is largely improved at these synapses. These findings establish that adult neurogenesis is an important process for synaptic transmission and bidirectional plasticity in the DG, accounting for its role in efficiently integrating novel incoming information and in forming new memories.


Asunto(s)
Giro Dentado/metabolismo , Potenciación a Largo Plazo , Neurogénesis , Neuronas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Animales , Animales Recién Nacidos , Giro Dentado/patología , Femenino , Masculino , Memoria , Ratones , Ratones Transgénicos , Neuronas/patología , Sinapsis/genética , Sinapsis/patología
16.
J Neurosci Methods ; 198(2): 204-12, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21513737

RESUMEN

The Central Nervous System (CNS) is constituted of complex and specific anatomical regions that cluster together and interact with each other with the ultimate objective of receiving and delivering information. This information is characterized by selective biochemical changes that happen within specific brain sub-regions. Most of these changes involve a dynamic balance between kinase and phosphatase activities. The fine-tuning of this kinase/phosphatase balance is thus critical for neuronal adaptation, transition to long-term responses and higher brain functions including specific behaviors. Data emerging from several biological systems may suggest that disruption of this dynamic cell signaling balance within specific brain sub-regions leads to behavioral impairments. Therefore, accurate and powerful techniques are required to study global changes in protein expression levels and protein activities in specific groups of cells. Laser-based systems for tissue microdissection represent a method of choice enabling more accurate proteomic profiling. The goal of this study was to develop a methodological approach using Laser Microdissection and Pressure Catapulting (LMPC) technology combined with an immunoblotting technique in order to specifically detect the expression of phosphoproteins in particular small brain areas.


Asunto(s)
Western Blotting , Encéfalo/metabolismo , Microdisección/métodos , Fosfoproteínas/análisis , Animales , Rayos Láser , Masculino , Células PC12 , Fosfoproteínas/metabolismo , Ratas , Ratas Sprague-Dawley
17.
PLoS One ; 4(11): e7704, 2009 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-19888328

RESUMEN

The Glucocorticoid Receptor (GR) is a transcription factor ubiquitously expressed in the brain. Activation of brain GRs by high levels of glucocorticoid (GC) hormones modifies a large variety of physiological and pathological-related behaviors. Unfortunately the specific cellular targets of GR-mediated behavioral effects of GC are still largely unknown. To address this issue, we generated a mutated form of the GR called DeltaGR. DeltaGR is a constitutively transcriptionally active form of the GR that is localized in the nuclei and activates transcription without binding to glucocorticoids. Using the tetracycline-regulated system (Tet-OFF), we developed an inducible transgenic approach that allows the expression of the DeltaGR in specific brain areas. We focused our study on a mouse line that expressed DeltaGR almost selectively in the glutamatergic neurons of the dentate gyrus (DG) of the hippocampus. This restricted expression of the DeltaGR increased anxiety-related behaviors without affecting other behaviors that could indirectly influence performance in anxiety-related tests. This behavioral phenotype was also associated with an up-regulation of the MAPK signaling pathway and Egr-1 protein in the DG. These findings identify glutamatergic neurons in the DG as one of the cellular substrate of stress-related pathologies.


Asunto(s)
Ansiedad/metabolismo , Giro Dentado/metabolismo , Regulación de la Expresión Génica , Receptores de Glucocorticoides/metabolismo , Transcripción Genética , Animales , Encéfalo/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/biosíntesis , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Mutación , Neuronas/metabolismo , Fenotipo
18.
PLoS One ; 3(4): e1959, 2008 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-18509506

RESUMEN

The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning.


Asunto(s)
Envejecimiento/fisiología , Diferenciación Celular/fisiología , Hipocampo/fisiología , Memoria/fisiología , Neuronas/citología , Animales , Células CHO , Cricetinae , Cricetulus , Giro Dentado/citología , Giro Dentado/fisiología , Hipocampo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Neuronas/fisiología , Proteína X Asociada a bcl-2/genética
19.
Nat Neurosci ; 8(5): 664-72, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15834420

RESUMEN

Many of the behavioral consequences of stress are mediated by the activation of the glucocorticoid receptor by stress-induced high levels of glucocorticoid hormones. To explore the molecular mechanisms of these effects, we combined in vivo and in vitro approaches. We analyzed mice carrying a brain-specific mutation (GR(NesCre)) in the glucocorticoid receptor gene (GR, also called Nr3c1) and cell lines that either express endogenous glucocorticoid receptor or carry a constitutively active form of the receptor (DeltaGR) that can be transiently induced. In the hippocampus of the wild-type [corrected] mice after stress, as well as in the cell lines, activation of glucocorticoid receptors greatly increased the expression and enzymatic activity of proteins in the MAPK signaling pathway and led to an increase in the levels of both Egr-1 mRNA and protein. In parallel, inhibition of the MAPK pathway within the hippocampus abolished the increase in contextual fear conditioning induced by glucocorticoids. The present results provide a molecular mechanism for the stress-related effects of glucocorticoids on fear memories.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Glucocorticoides/metabolismo , Hipocampo/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Receptores de Glucocorticoides/metabolismo , Estrés Fisiológico/metabolismo , Factores de Transcripción/metabolismo , Animales , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Proteínas de Unión al ADN/genética , Proteína 1 de la Respuesta de Crecimiento Precoz , Inhibidores Enzimáticos/farmacología , Miedo/fisiología , Hipocampo/fisiopatología , Proteínas Inmediatas-Precoces/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Receptores de Glucocorticoides/genética , Estrés Fisiológico/fisiopatología , Factores de Transcripción/genética , Regulación hacia Arriba/fisiología
20.
Development ; 130(22): 5493-501, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14530295

RESUMEN

To understand the role Fgf signalling in skin and hair follicle development, we analysed the phenotype of mice deficient for Fgfr2-IIIb and its main ligand Fgf10. These studies showed that the severe epidermal hypoplasia found in mice null for Fgfr2-IIIb is caused by a lack of the basal cell proliferation that normally results in a stratified epidermis. Although at term the epidermis of Fgfr2-IIIb null mice is only two to three cells thick, it expresses the classical markers of epidermal differentiation and establishes a functional barrier. Mice deficient for Fgf10 display a similar but less severe epidermal hypoplasia. By contrast, Fgfr2-IIIb-/-, but not Fgf10-/-, mice produced significantly fewer hair follicles, and their follicles were developmentally retarded. Following transplantation onto nude mice, grafts of Fgfr2-IIIb-/- skin showed impaired hair formation, with a decrease in hair density and the production of abnormal pelage hairs. Expression of Lef1, Shh and Bmp4 in the developing hair follicles of Fgfr2-IIIb-/- mice was similar to wild type. These results suggest that Fgf signalling positively regulates the number of keratinocytes needed to form a normal stratified epidermis and to initiate hair placode formation. In addition, Fgf signals are required for the growth and patterning of pelage hairs.


Asunto(s)
Epidermis/embriología , Folículo Piloso/embriología , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/fisiología , Animales , Epidermis/patología , Factor 10 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/deficiencia , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Folículo Piloso/patología , Ratones , Proteínas Tirosina Quinasas Receptoras/deficiencia , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos/deficiencia , Trasplante de Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA