Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Prostaglandins Other Lipid Mediat ; 170: 106789, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37879396

RESUMEN

Urinary eicosanoid concentrations reflect inflammatory processes in multiple diseases and have been used as biomarkers of disease as well as suggested for patient stratification in precision medicine. However, implementation of urinary eicosanoid profiling in large-scale analyses is restricted due to sample preparation limits. Here we demonstrate a single solid-phase extraction of 300 µL urine in 96-well-format for prostaglandins, thromboxanes, isoprostanes, cysteinyl-leukotriene E4 and the linoleic acid-derived dihydroxy-octadecenoic acids (9,10- and 12,13-DiHOME). A simultaneous screening protocol was also developed for cortisol/cortisone and 7 exogenous steroids as well as 3 cyclooxygenase inhibitors. Satisfactory performance for quantification of eicosanoids with an appropriate internal standard was demonstrated for intra-plate analyses (CV = 8.5-15.1%) as well as for inter-plate (n = 35) from multiple studies (CV = 22.1-34.9%). Storage stability was evaluated at - 20 °C, and polar tetranors evidenced a 50% decrease after 5 months, while the remaining eicosanoids evidenced no significant degradation. All eicosanoids were stable over 3.5-years in urine stored at - 80 °C. This method will facilitate the implementation of urinary eicosanoid quantification in large-scale screening.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Eicosanoides/metabolismo
2.
Biochem Soc Trans ; 50(6): 1569-1582, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36454542

RESUMEN

Oxylipins are enzymatic and non-enzymatic metabolites of mono- or polyunsaturated fatty acids that encompass potent lipid mediators including the eicosanoids and docosanoids. Previously considered of low interest and often dismissed as 'just fat', octadecanoid oxylipins have only recently begun to be recognized as lipid mediators in humans. In the last few years, these compounds have been found to be involved in the mediation of multiple biological processes related to nociception, tissue modulation, cell proliferation, metabolic regulation, inflammation, and immune regulation. At the same time, the study of octadecanoids is hampered by a lack of standardization in the field, a paucity of analytical standards, and a lack of domain expertise. These issues have collectively limited the investigation of the biosynthesis and bioactivity of octadecanoids. Here, we present an overview of the primary enzymatic pathways for the oxidative metabolism of 18-carbon fatty acids in humans and of the current knowledge of the major biological activity of the resulting octadecanoids. We also propose a systematic nomenclature system based upon that used for the eicosanoids in order to avoid ambiguities and resolve multiple designations for the same octadecanoid. The aim of this review is to provide an initial framework for the field and to assist in its standardization as well as to increase awareness of this class of compounds in order to stimulate research into this interesting group of lipid mediators.


Asunto(s)
Eicosanoides , Oxilipinas , Humanos , Eicosanoides/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos , Inflamación
3.
Anal Chem ; 94(42): 14618-14626, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36219822

RESUMEN

Octadecanoids are broadly defined as oxylipins (i.e., lipid mediators) derived from 18-carbon fatty acids. In contrast to the well-studied eicosanoids, there is a lack of analytical methods for octadecanoids, hampering further investigations in the field. We developed an integrated workflow combining chiral separation by supercritical fluid chromatography (SFC) and reversed-phase liquid chromatography (LC) coupled to tandem mass spectrometry detection for quantification of a broad panel of octadecanoids. The platform includes 70 custom-synthesized analytical and internal standards to extend the coverage of the octadecanoid synthetic pathways. A total of 103 octadecanoids could be separated by chiral SFC and complex enantioseparations could be performed in <13 min, while the achiral LC method separated 67 octadecanoids in 13.5 min. The LC method provided a robust complementary approach with greater sensitivity relative to the SFC method. Both methods were validated in solvent and surrogate matrix in terms of linearity, lower limits of quantification (LLOQ), recovery, accuracy, precision, and matrix effects. Instrumental linearity was good for both methods (R2 > 0.995) and LLOQ ranged from 0.03 to 6.00 ng/mL for SFC and 0.01 to 1.25 ng/mL for LC. The average accuracy in the solvent and surrogate matrix ranged from 89 to 109% in SFC and from 106 to 220% in LC, whereas coefficients of variation (CV) were <14% (at medium and high concentrations) and 26% (at low concentrations). Validation in the surrogate matrix showed negligible matrix effects (<16% for all analytes), and average recoveries ranged from 71 to 83%. The combined methods provide a platform to investigate the biological activity of octadecanoids and expand our understanding of these little-studied compounds.


Asunto(s)
Cromatografía con Fluido Supercrítico , Cromatografía con Fluido Supercrítico/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía de Fase Inversa , Oxilipinas , Solventes , Carbono
4.
Org Lett ; 22(19): 7455-7459, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32937076

RESUMEN

The total synthesis of a docosahexaenoic-acid-derived prostaglandin, 4,11-diepi-4-F4t-neuroprostane, featuring a complex lateral chain was achieved for the first time. A novel prostaglandin cyclopentane skeleton obtained via an intramolecular highly selective organocatalytic Michael sequence of a formyl-enal derivative allowed the desired and exclusive thermodynamic trans configuration of the lipidic lateral chains.

5.
Essays Biochem ; 64(3): 463-484, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32602531

RESUMEN

Polyunsaturated fatty acids (PUFAs) are essential components in eukaryotic cell membrane. They take part in the regulation of cell signalling pathways and act as precursors in inflammatory metabolism. Beside these, PUFAs auto-oxidize through free radical initiated mechanism and release key products that have various physiological functions. These products surfaced in the early nineties and were classified as prostaglandin isomers or isoprostanes, neuroprostanes and phytoprostanes. Although these molecules are considered robust biomarkers of oxidative damage in diseases, they also contain biological activities in humans. Conceptual progress in the last 3 years has added more understanding about the importance of these molecules in different fields. In this chapter, a brief overview of the past 30 years and the recent scope of these molecules, including their biological activities, biosynthetic pathways and analytical approaches are discussed.


Asunto(s)
Neuroprostanos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido alfa-Linolénico/metabolismo , Biomarcadores/metabolismo , Ácidos Grasos Omega-6/metabolismo , Humanos , Oxidación-Reducción , Estrés Oxidativo , Plantas/química , Plantas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...