Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Br J Haematol ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379149

RESUMEN

Shwachman-Diamond syndrome represents a clinically and genetically heterogeneous disorder. We report on an infant with a very severe, fatal clinical course caused by biallelic EFL1 variants: c.89A>G, p.(His30Arg), and c.2599A>G, p.(Asn867Asp). Functional analysis of patient-derived B-lymphoblastoid and SV40-transformed fibroblast cell lines suggests that the compound heterozygous EFL1 variants impaired mature ribosome formation leading to compromised protein synthesis, ultimately resulting in a severe form of Shwachman-Diamond syndrome.

2.
Genes Dev ; 38(15-16): 755-771, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39231615

RESUMEN

Premature telomere shortening or telomere instability is associated with a group of rare and heterogeneous diseases collectively known as telomere biology disorders (TBDs). Here we identified two unrelated individuals with clinical manifestations of TBDs and short telomeres associated with the identical monoallelic variant c.767A>G; Y256C in RPA2 Although the replication protein A2 (RPA2) mutant did not affect ssDNA binding and G-quadruplex-unfolding properties of RPA, the mutation reduced the affinity of RPA2 with the ubiquitin ligase RFWD3 and reduced RPA ubiquitination. Using engineered knock-in cell lines, we found an accumulation of RPA at telomeres that did not trigger ATR activation but caused short and dysfunctional telomeres. Finally, both patients acquired, in a subset of blood cells, somatic genetic rescue events in either POT1 genes or TERT promoters known to counteract the accelerated telomere shortening. Collectively, our study indicates that variants in RPA2 represent a novel genetic cause of TBDs. Our results further support the fundamental role of the RPA complex in regulating telomere length and stability in humans.


Asunto(s)
Proteína de Replicación A , Proteínas de Unión a Telómeros , Telómero , Humanos , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Telómero/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Heterocigoto , Masculino , Femenino , Complejo Shelterina , Acortamiento del Telómero/genética , Mutación , Telomerasa/genética , Telomerasa/metabolismo , Ubiquitinación/genética , Ubiquitina-Proteína Ligasas/genética
3.
J Clin Invest ; 134(17)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39225097

RESUMEN

The ubiquitously expressed small GTPase Ras-related protein 1B (RAP1B) acts as a molecular switch that regulates cell signaling, cytoskeletal remodeling, and cell trafficking and activates integrins in platelets and lymphocytes. The residue G12 in the P-loop is required for the RAP1B-GTPase conformational switch. Heterozygous germline RAP1B variants have been described in patients with syndromic thrombocytopenia. However, the causality and pathophysiological impact remained unexplored. We report a boy with neonatal thrombocytopenia, combined immunodeficiency, neutropenia, and monocytopenia caused by a heterozygous de novo single nucleotide substitution, c.35G>A (p.G12E) in RAP1B. We demonstrate that G12E and the previously described G12V and G60R were gain-of-function variants that increased RAP1B activation, talin recruitment, and integrin activation, thereby modifying late responses such as platelet activation, T cell proliferation, and migration. We show that in our patient, G12E was a somatic variant whose allele frequency decreased over time in the peripheral immune compartment, but remained stable in bone marrow cells, suggesting a differential effect in distinct cell populations. Allogeneic hematopoietic stem cell transplantation fully restored the patient's hemato-immunological phenotype. Our findings define monoallelic RAP1B gain-of-function variants as a cause for constitutive immunodeficiency and thrombocytopenia. The phenotypic spectrum ranged from isolated hematological manifestations in our patient with somatic mosaicism to complex syndromic features in patients with reported germline RAP1B variants.


Asunto(s)
Mutación con Ganancia de Función , Trombocitopenia , Proteínas de Unión al GTP rap , Humanos , Masculino , Sustitución de Aminoácidos , Trasplante de Células Madre Hematopoyéticas , Síndromes de Inmunodeficiencia/genética , Mutación Missense , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo , Trombocitopenia/genética , Trombocitopenia/patología , Recién Nacido , Lactante , Preescolar , Niño
4.
Br J Haematol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39233474

RESUMEN

MYSM1 deficiency causes inherited bone marrow failure syndrome (IBMFS). We have previously identified an IBMFS patient with a homozygous pathogenic variant in MYSM1 who recovered from cytopenia due to spontaneous correction of one MYSM1 variant in the haematopoietic compartment, an event called somatic genetic rescue (SGR). The study of the genetic and biological aspects of the patient's haematopoietic/lymphopoietic system over a decade after SGR shows that one genetically corrected haematopoietic stem cell (HSC) can restore a healthy and stable haematopoietic system. This supports in vivo gene correction of HSCs as a promising treatment for IBMFS, including MYSM1 deficiency.

5.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167107, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38430974

RESUMEN

Hereditary renal cell carcinoma (RCC) is caused by germline mutations in a subset of genes, including VHL, MET, FLCN, and FH. However, many familial RCC cases do not harbor mutations in the known predisposition genes. Using Whole Exome Sequencing, we identified two germline missense variants in the DCLRE1B/Apollo gene (ApolloN246I and ApolloY273H) in two unrelated families with several RCC cases. Apollo encodes an exonuclease involved in DNA Damage Response and Repair (DDRR) and telomere integrity. We characterized these two functions in the human renal epithelial cell line HKC8. The decrease or inhibition of Apollo expression sensitizes these cells to DNA interstrand crosslink damage (ICLs). HKC8 Apollo-/- cells appear defective in the DDRR and present an accumulation of telomere damage. Wild-type and mutated Apollo forms could interact with TRF2, a shelterin protein involved in telomere protection. However, only ApolloWT can rescue the telomere damage in HKC8 Apollo-/- cells. Our results strongly suggest that ApolloN246I and ApolloY273H are loss-of-function mutants that cause impaired telomere integrity and could lead to genomic instability. Altogether, our results suggest that mutations in Apollo could induce renal oncogenesis.


Asunto(s)
Carcinoma de Células Renales , Humanos , Carcinoma de Células Renales/genética , Mutación de Línea Germinal , Telómero/genética , Daño del ADN , Reparación del ADN/genética , Exodesoxirribonucleasas/genética
6.
Hum Mol Genet ; 33(7): 612-623, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38176734

RESUMEN

Telomeres are nucleoprotein structures that protect the chromosome ends from degradation and fusion. Telomerase is a ribonucleoprotein complex essential to maintain the length of telomeres. Germline defects that lead to short and/or dysfunctional telomeres cause telomere biology disorders (TBDs), a group of rare and heterogeneous Mendelian diseases including pulmonary fibrosis, dyskeratosis congenita, and Høyeraal-Hreidarsson syndrome. TPP1, a telomeric factor encoded by the gene ACD, recruits telomerase at telomere and stimulates its activity via its TEL-patch domain that directly interacts with TERT, the catalytic subunit of telomerase. TBDs due to TPP1 deficiency have been reported only in 11 individuals. We here report four unrelated individuals with a wide spectrum of TBD manifestations carrying either heterozygous or homozygous ACD variants consisting in the recurrent and previously described in-frame deletion of K170 (K170∆) and three novel missense mutations G179D, L184R, and E215V. Structural and functional analyses demonstrated that the four variants affect the TEL-patch domain of TPP1 and impair telomerase activity. In addition, we identified in the ACD gene several motifs associated with small deletion hotspots that could explain the recurrence of the K170∆ mutation. Finally, we detected in a subset of blood cells from one patient, a somatic TERT promoter-activating mutation that likely provides a selective advantage over non-modified cells, a phenomenon known as indirect somatic genetic rescue. Together, our results broaden the genetic and clinical spectrum of TPP1 deficiency and specify new residues in the TEL-patch domain that are crucial for length maintenance and stability of human telomeres in vivo.


Asunto(s)
Complejo Shelterina , Telomerasa , Proteínas de Unión a Telómeros , Humanos , Biología , Mutación , Complejo Shelterina/genética , Telomerasa/genética , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
7.
Cells ; 12(24)2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38132118

RESUMEN

Regulator of TElomere Length Helicase 1 (RTEL1) is a helicase required for telomere maintenance and genome replication and repair. RTEL1 has been previously shown to participate in the nuclear export of small nuclear RNAs. Here we show that RTEL1 deficiency leads to a nuclear envelope destabilization exclusively in cells entering S-phase and in direct connection to origin firing. We discovered that inhibiting protein import also leads to similar, albeit non-cell cycle-related, nuclear envelope disruptions. Remarkably, overexpression of wild-type RTEL1, or of its C-terminal part lacking the helicase domain, protects cells against nuclear envelope anomalies mediated by protein import inhibition. We identified distinct domains in the C-terminus of RTEL1 essential for the interaction with KPNB1 (importin ß) and NUP153, respectively, and we demonstrated that, on its own, the latter domain can promote the dynamic nuclear internalization of peptides that freely diffuse through the nuclear pore. Consistent with putative functions exerted in protein import, RTEL1 can be visualized on both sides of the nuclear pore using high-resolution microscopy. In all, our work points to an unanticipated, helicase-independent, role of RTEL1 in connecting both nucleocytoplasmic trafficking and nuclear envelope integrity to genome replication initiation in S-phase.


Asunto(s)
Membrana Nuclear , beta Carioferinas , Humanos , Transporte Activo de Núcleo Celular , Membrana Nuclear/metabolismo , beta Carioferinas/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Replicación del ADN , ADN Helicasas/metabolismo
9.
Nat Rev Genet ; 24(2): 86-108, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36151328

RESUMEN

Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.


Asunto(s)
Telomerasa , Telómero , Humanos , Telómero/genética , Telómero/metabolismo , Envejecimiento/genética , Homeostasis del Telómero , Inestabilidad Genómica , Biología , Telomerasa/genética
10.
Immunity ; 55(10): 1872-1890.e9, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36130603

RESUMEN

Memory B cells (MBCs) can persist for a lifetime, but the mechanisms that allow their long-term survival remain poorly understood. Here, we isolated and analyzed human splenic smallpox/vaccinia protein B5-specific MBCs in individuals who were vaccinated more than 40 years ago. Only a handful of clones persisted over such an extended period, and they displayed limited intra-clonal diversity with signs of extensive affinity-based selection. These long-lived MBCs appeared enriched in a CD21hiCD20hi IgG+ splenic B cell subset displaying a marginal-zone-like NOTCH/MYC-driven signature, but they did not harbor a unique longevity-associated transcriptional or metabolic profile. Finally, the telomeres of B5-specific, long-lived MBCs were longer than those in patient-paired naive B cells in all the samples analyzed. Overall, these results imply that separate mechanisms such as early telomere elongation, affinity selection during the contraction phase, and access to a specific niche contribute to ensuring the functional longevity of MBCs.


Asunto(s)
Memoria Inmunológica , Células B de Memoria , Linfocitos B/metabolismo , Centro Germinal , Humanos , Inmunoglobulina G/metabolismo
11.
Dev Cell ; 57(14): 1728-1741.e6, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35768000

RESUMEN

Non-alcoholic steatotic liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. NAFLD has a major effect on the intrinsic proliferative properties of hepatocytes. Here, we investigated the mechanisms underlying the activation of DNA damage response during NAFLD. Proliferating mouse NAFLD hepatocytes harbor replication stress (RS) with an alteration of the replication fork's speed and activation of ATR pathway, which is sufficient to cause DNA breaks. Nucleotide pool imbalance occurring during NAFLD is the key driver of RS. Remarkably, DNA lesions drive cGAS/STING pathway activation, a major component of cells' intrinsic immune response. The translational significance of this study was reiterated by showing that lipid overload in proliferating HepaRG was sufficient to induce RS and nucleotide pool imbalance. Moreover, livers from NAFLD patients displayed nucleotide pathway deregulation and cGAS/STING gene alteration. Altogether, our findings shed light on the mechanisms by which damaged NAFLD hepatocytes might promote disease progression.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Daño del ADN , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Nucleótidos , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo
13.
Respiration ; 101(6): 531-543, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35078193

RESUMEN

BACKGROUND: Monogenic and polygenic inheritances are evidenced for idiopathic pulmonary fibrosis (IPF). Pathogenic variations in surfactant protein-related genes, telomere-related genes (TRGs), and a single-nucleotide polymorphism in the promoter of MUC5B gene encoding mucin 5B (rs35705950 T risk allele) are reported. This French-Greek collaborative study, Gen-Phen-Re-GreekS in inheritable IPF (iIPF), aimed to investigate genetic components and patients' characteristics in the Greek national IPF cohort with suspected heritability. PATIENTS AND METHODS: 150 patients with familial PF, personal-family extrapulmonary disease suggesting short telomere syndrome, and/or young age IPF were analyzed. RESULTS: MUC5B rs35705950 T risk allele was detected in 103 patients (90 heterozygous, 13 homozygous, allelic frequency of 39%), monoallelic TRG pathogenic variations in 19 patients (8 TERT, 5 TERC, 2 RTEL1, 2 PARN, 1 NOP10, and 1 NHP2), and biallelic ABCA3 pathogenic variations in 3. Overlapping MUC5B rs35705950 T risk allele and TRG pathogenic variations were shown in 11 patients (5 TERT, 3 TERC, 1 PARN, 1 NOP10, and 1 NHP2), MUC5B rs35705950 T risk allele, and biallelic ABCA3 pathogenic variations in 2. In 38 patients, neither MUC5B rs35705950 T risk allele nor TRG pathogenic variations were detectable. Kaplan-Meier curves showed differences in time-to-death (p = 0.025) where patients with MUC5B rs35705950 T risk allele alone or in combination with TRG pathogenic variations presented better prognosis. CONCLUSION: The Gen-Phen-Re-GreekS in iIPF identified multiple and overlapping genetic components including the rarest, underlying disease's genetic "richesse," complexity and heterogeneity. Time-to-death differences may relate to diverse IPF pathogenetic mechanisms implicating "personalized" medical care driven by genotypes in the near future.


Asunto(s)
Fibrosis Pulmonar Idiopática , Estudios de Cohortes , Predisposición Genética a la Enfermedad , Genotipo , Grecia , Humanos , Fibrosis Pulmonar Idiopática/genética , Fenotipo
14.
Blood ; 139(16): 2427-2440, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35007328

RESUMEN

Inherited bone marrow failure syndromes (IBMFSs) are a group of disorders typified by impaired production of 1 or several blood cell types. The telomere biology disorders dyskeratosis congenita (DC) and its severe variant, Høyeraal-Hreidarsson (HH) syndrome, are rare IBMFSs characterized by bone marrow failure, developmental defects, and various premature aging complications associated with critically short telomeres. We identified biallelic variants in the gene encoding the 5'-to-3' DNA exonuclease Apollo/SNM1B in 3 unrelated patients presenting with a DC/HH phenotype consisting of early-onset hypocellular bone marrow failure, B and NK lymphopenia, developmental anomalies, microcephaly, and/or intrauterine growth retardation. All 3 patients carry a homozygous or compound heterozygous (in combination with a null allele) missense variant affecting the same residue L142 (L142F or L142S) located in the catalytic domain of Apollo. Apollo-deficient cells from patients exhibited spontaneous chromosome instability and impaired DNA repair that was complemented by CRISPR/Cas9-mediated gene correction. Furthermore, patients' cells showed signs of telomere fragility that were not associated with global reduction of telomere length. Unlike patients' cells, human Apollo KO HT1080 cell lines showed strong telomere dysfunction accompanied by excessive telomere shortening, suggesting that the L142S and L142F Apollo variants are hypomorphic. Collectively, these findings define human Apollo as a genome caretaker and identify biallelic Apollo variants as a genetic cause of a hitherto unrecognized severe IBMFS that combines clinical hallmarks of DC/HH with normal telomere length.


Asunto(s)
Disqueratosis Congénita , Discapacidad Intelectual , Microcefalia , Disqueratosis Congénita/genética , Disqueratosis Congénita/metabolismo , Retardo del Crecimiento Fetal , Humanos , Discapacidad Intelectual/genética , Microcefalia/genética , Microcefalia/metabolismo , Mutación , Telómero/genética , Telómero/metabolismo
15.
Blood ; 139(7): 1039-1051, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34767620

RESUMEN

Human telomere biology disorders (TBD)/short telomere syndromes (STS) are heterogeneous disorders caused by inherited loss-of-function mutations in telomere-associated genes. Here, we identify 3 germline heterozygous missense variants in the RPA1 gene in 4 unrelated probands presenting with short telomeres and varying clinical features of TBD/STS, including bone marrow failure, myelodysplastic syndrome, T- and B-cell lymphopenia, pulmonary fibrosis, or skin manifestations. All variants cluster to DNA-binding domain A of RPA1 protein. RPA1 is a single-strand DNA-binding protein required for DNA replication and repair and involved in telomere maintenance. We showed that RPA1E240K and RPA1V227A proteins exhibit increased binding to single-strand and telomeric DNA, implying a gain in DNA-binding function, whereas RPA1T270A has binding properties similar to wild-type protein. To study the mutational effect in a cellular system, CRISPR/Cas9 was used to knock-in the RPA1E240K mutation into healthy inducible pluripotent stem cells. This resulted in severe telomere shortening and impaired hematopoietic differentiation. Furthermore, in patients with RPA1E240K, we discovered somatic genetic rescue in hematopoietic cells due to an acquired truncating cis RPA1 mutation or a uniparental isodisomy 17p with loss of mutant allele, coinciding with stabilized blood counts. Using single-cell sequencing, the 2 somatic genetic rescue events were proven to be independently acquired in hematopoietic stem cells. In summary, we describe the first human disease caused by germline RPA1 variants in individuals with TBD/STS.


Asunto(s)
Trastornos de Fallo de la Médula Ósea/patología , Mutación con Ganancia de Función , Heterocigoto , Síndromes Mielodisplásicos/patología , Proteína de Replicación A/genética , Acortamiento del Telómero , Telómero/genética , Adolescente , Adulto , Trastornos de Fallo de la Médula Ósea/etiología , Trastornos de Fallo de la Médula Ósea/metabolismo , Diferenciación Celular , Niño , Femenino , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/etiología , Síndromes Mielodisplásicos/metabolismo , Adulto Joven
16.
Blood ; 138(21): 2016-2018, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34821936
17.
Cancer Res ; 81(19): 4994-5006, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34341072

RESUMEN

Ewing sarcoma is characterized by pathognomonic translocations, most frequently fusing EWSR1 with FLI1. An estimated 30% of Ewing sarcoma tumors also display genetic alterations in STAG2, TP53, or CDKN2A (SPC). Numerous attempts to develop relevant Ewing sarcoma models from primary human cells have been unsuccessful in faithfully recapitulating the phenotypic, transcriptomic, and epigenetic features of Ewing sarcoma. In this study, by engineering the t(11;22)(q24;q12) translocation together with a combination of SPC mutations, we generated a wide collection of immortalized cells (EWIma cells) tolerating EWSR1-FLI1 expression from primary mesenchymal stem cells (MSC) derived from a patient with Ewing sarcoma. Within this model, SPC alterations strongly favored Ewing sarcoma oncogenicity. Xenograft experiments with independent EWIma cells induced tumors and metastases in mice, which displayed bona fide features of Ewing sarcoma. EWIma cells presented balanced but also more complex translocation profiles mimicking chromoplexy, which is frequently observed in Ewing sarcoma and other cancers. Collectively, these results demonstrate that bone marrow-derived MSCs are a source of origin for Ewing sarcoma and also provide original experimental models to investigate Ewing sarcomagenesis. SIGNIFICANCE: These findings demonstrate that Ewing sarcoma can originate from human bone-marrow-derived mesenchymal stem cells and that recurrent mutations support EWSR1-FLI1 translocation-mediated transformation.


Asunto(s)
Transformación Celular Neoplásica , Susceptibilidad a Enfermedades , Células Madre Mesenquimatosas/metabolismo , Sarcoma de Ewing/etiología , Sarcoma de Ewing/metabolismo , Animales , Biomarcadores , Sistemas CRISPR-Cas , Células Cultivadas , Biología Computacional/métodos , Modelos Animales de Enfermedad , Edición Génica , Perfilación de la Expresión Génica , Reordenamiento Génico , Marcación de Gen , Xenoinjertos , Humanos , Inmunofenotipificación , Hibridación Fluorescente in Situ , Células Madre Mesenquimatosas/patología , Ratones , Mutación , Sarcoma de Ewing/patología , Translocación Genética
18.
Nat Commun ; 12(1): 5044, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413298

RESUMEN

Indirect somatic genetic rescue (SGR) of a germline mutation is thought to be rare in inherited Mendelian disorders. Here, we establish that acquired mutations in the EIF6 gene are a frequent mechanism of SGR in Shwachman-Diamond syndrome (SDS), a leukemia predisposition disorder caused by a germline defect in ribosome assembly. Biallelic mutations in the SBDS or EFL1 genes in SDS impair release of the anti-association factor eIF6 from the 60S ribosomal subunit, a key step in the translational activation of ribosomes. Here, we identify diverse mosaic somatic genetic events (point mutations, interstitial deletion, reciprocal chromosomal translocation) in SDS hematopoietic cells that reduce eIF6 expression or disrupt its interaction with the 60S subunit, thereby conferring a selective advantage over non-modified cells. SDS-related somatic EIF6 missense mutations that reduce eIF6 dosage or eIF6 binding to the 60S subunit suppress the defects in ribosome assembly and protein synthesis across multiple SBDS-deficient species including yeast, Dictyostelium and Drosophila. Our data suggest that SGR is a universal phenomenon that may influence the clinical evolution of diverse Mendelian disorders and support eIF6 suppressor mimics as a therapeutic strategy in SDS.


Asunto(s)
Mutación , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/genética , Ribosomas/patología , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/patología , Adolescente , Adulto , Animales , Fenómenos Biológicos , Células Cultivadas , Niño , Preescolar , Dictyostelium , Drosophila , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Células Germinativas , Humanos , Lactante , Simulación de Dinámica Molecular , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Proteínas/genética , Proteínas/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido , Síndrome de Shwachman-Diamond/metabolismo , Adulto Joven
19.
Cell Rep ; 33(13): 108559, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33378670

RESUMEN

The MRE11-RAD50-NBS1 complex plays a central role in response to DNA double-strand breaks. Here, we identify a patient with bone marrow failure and developmental defects caused by biallelic RAD50 mutations. One of the mutations creates a null allele, whereas the other (RAD50E1035Δ) leads to the loss of a single residue in the heptad repeats within the RAD50 coiled-coil domain. This mutation represents a human RAD50 separation-of-function mutation that impairs DNA repair, DNA replication, and DNA end resection without affecting ATM-dependent DNA damage response. Purified recombinant proteins indicate that RAD50E1035Δ impairs MRE11 nuclease activity. The corresponding mutation in Saccharomyces cerevisiae causes severe thermosensitive defects in both DNA repair and Tel1ATM-dependent signaling. These findings demonstrate that a minor heptad break in the RAD50 coiled coil suffices to impede MRE11 complex functions in human and yeast. Furthermore, these results emphasize the importance of the RAD50 coiled coil to regulate MRE11-dependent DNA end resection in humans.


Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteína Homóloga de MRE11/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Trastornos de Fallo de la Médula Ósea/genética , Niño , Preescolar , Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Discapacidades del Desarrollo/genética , Humanos , Unión Proteica , Dominios Proteicos , Análisis de Secuencia de Proteína , Eliminación de Secuencia , Transducción de Señal
20.
Nucleic Acids Res ; 48(13): 7239-7251, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32542379

RESUMEN

Telomeres cap the ends of eukaryotic chromosomes and distinguish them from broken DNA ends to suppress DNA damage response, cell cycle arrest and genomic instability. Telomeres are elongated by telomerase to compensate for incomplete replication and nuclease degradation and to extend the proliferation potential of germ and stem cells and most cancers. However, telomeres in somatic cells gradually shorten with age, ultimately leading to cellular senescence. Hoyeraal-Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and diverse symptoms including bone marrow failure, immunodeficiency, and neurodevelopmental defects. HHS is caused by germline mutations in telomerase subunits, factors essential for its biogenesis and recruitment to telomeres, and in the helicase RTEL1. While diverse phenotypes were associated with RTEL1 deficiency, the telomeric role of RTEL1 affected in HHS is yet unknown. Inducible ectopic expression of wild-type RTEL1 in patient fibroblasts rescued the cells, enabled telomerase-dependent telomere elongation and suppressed the abnormal cellular phenotypes, while silencing its expression resulted in gradual telomere shortening. Our observations reveal an essential role of the RTEL1 C-terminus in facilitating telomerase action at the telomeric 3' overhang. Thus, the common etiology for HHS is the compromised telomerase action, resulting in telomere shortening and reduced lifespan of telomerase positive cells.


Asunto(s)
ADN Helicasas/metabolismo , Disqueratosis Congénita/genética , Retardo del Crecimiento Fetal/genética , Discapacidad Intelectual/genética , Microcefalia/genética , Homeostasis del Telómero , Células Cultivadas , ADN Helicasas/química , ADN Helicasas/genética , Fibroblastos/metabolismo , Humanos , Dominios Proteicos , Telomerasa/genética , Telomerasa/metabolismo , Acortamiento del Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...