Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cardiothorac Surg ; 17(1): 331, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550556

RESUMEN

BACKGROUND: Many studies explored the impact of ventilation during cardiopulmonary bypass (CPB) period with conflicting results. Functional residual capacity or End Expiratory Lung Volume (EELV) may be disturbed after cardiac surgery but the specific effects of CPB have not been studied. Our objective was to compare the effect of two ventilation strategies during CPB on EELV. METHODS: Observational single center study in a tertiary teaching hospital. Adult patients undergoing on-pump cardiac surgery by sternotomy were included. Maintenance of ventilation during CPB was left to the discretion of the medical team, with division between "ventilated" and "non-ventilated" groups afterwards. Iterative intra and postoperative measurements of EELV were carried out by nitrogen washin-washout technique. Main endpoint was EELV at the end of surgery. Secondary endpoints were EELV one hour after ICU admission, PaO2/FiO2 ratio, driving pressure, duration of mechanical ventilation and post-operative pulmonary complications. RESULTS: Forty consecutive patients were included, 20 in each group. EELV was not significantly different between the ventilated versus non-ventilated groups at the end of surgery (1796 ± 586 mL vs. 1844 ± 524 mL, p = 1) and one hour after ICU admission (2095 ± 562 vs. 2045 ± 476 mL, p = 1). No significant difference between the two groups was observed on PaO2/FiO2 ratio (end of surgery: 339 ± 149 vs. 304 ± 131, p = 0.8; one hour after ICU: 324 ± 115 vs. 329 ± 124, p = 1), driving pressure (end of surgery: 7 ± 1 vs. 8 ± 1 cmH2O, p = 0.3; one hour after ICU: 9 ± 3 vs. 9 ± 3 cmH2O), duration of mechanical ventilation (5.5 ± 4.8 vs 8.2 ± 10.0 h, p = 0.5), need postoperative respiratory support (2 vs. 1, p = 1), occurrence of pneumopathy (2 vs. 0, p = 0.5) and radiographic atelectasis (7 vs. 8, p = 1). CONCLUSION: No significant difference was observed in EELV after cardiac surgery between not ventilated and ventilated patients during CPB.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Respiración Artificial , Adulto , Humanos , Respiración Artificial/efectos adversos , Puente Cardiopulmonar/efectos adversos , Mediciones del Volumen Pulmonar/métodos , Pulmón , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Procedimientos Quirúrgicos Cardíacos/métodos , Complicaciones Posoperatorias/etiología , Periodo Perioperatorio/efectos adversos
2.
Ann Intensive Care ; 7(1): 64, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28608135

RESUMEN

BACKGROUND: Early exercise of critically ill patients may have beneficial effects on muscle strength, mass and systemic inflammation. During pressure support ventilation (PSV), a mismatch between demand and assist could increase work of breathing and limit exercise. A better exercise tolerance is possible with a proportional mode of ventilation (Proportional Assist Ventilation, PAV+ and Neurally Adjusted Ventilatory Assist, NAVA). We examined whether, in critically ill patients, PSV and proportional ventilation have different effects on respiratory muscles unloading and work efficiency during exercise. METHODS: Prospective pilot randomized cross-over study performed in a medico-surgical ICU. Patients requiring mechanical ventilation >48 h were enrolled. At initiation, the patients underwent an incremental workload test on a cycloergometer to determine the maximum level capacity. The next day, 2 15-min exercise, at 60% of the maximum capacity, were performed while patients were randomly ventilated with PSV and PAV+ or NAVA. The change in oxygen consumption (ΔVO2, indirect calorimetry) and the work efficiency (ratio of ΔVO2 per mean power) were computed. RESULTS: Ten patients were examined, 6 ventilated with PSV/PAV+ and 4 with PSV/NAVA. Despite the same mean inspiratory pressure at baseline between the modes, baseline VO2 (median, IQR) was higher during proportional ventilation (301 ml/min, 270-342) compared to PSV (249 ml/min, 206-353). Exercise with PSV was associated with a significant increase in VO2 (ΔVO2, median, IQR) (77.6 ml/min, 59.9-96.5), while VO2 did not significantly change during exercise with proportional modes (46.3 ml/min, 5.7-63.7, p < 0.05). As a result, exercise with proportional modes was associated with a better work efficiency than with PSV. The ventilator modes did not affect patient's dyspnea, limb fatigue, distance, hemodynamics and breathing pattern. CONCLUSIONS: Proportional ventilation during exercise results in higher work efficiency and less increase in VO2 compared to ventilation with PSV. These preliminary findings suggest that proportional ventilation could enhance the training effect and facilitate rehabilitation.

3.
J Appl Physiol (1985) ; 120(2): 196-203, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26586906

RESUMEN

The optimal ventilation strategy during cardiopulmonary resuscitation (CPR) is unknown. Chest compression (CC) generates circulation, while during decompression, thoracic recoil generates negative pressure and venous return. Continuous flow insufflation of oxygen (CFI) allows noninterrupted CC and generates positive airway pressure (Paw). The main objective of this study was to assess the effects of positive Paw compared with the current recommended ventilation strategy on intrathoracic pressure (P(IT)) variations, ventilation, and lung volume. In a mechanical model, allowing compression of the thorax below an equilibrium volume mimicking functional residual capacity (FRC), CC alone or with manual bag ventilation were compared with two levels of Paw with CFI. Lung volume change below FRC at the end of decompression and P(IT), as well as estimated alveolar ventilation, were measured during the bench study. Recordings were obtained in five cardiac arrest patients to confirm the bench findings. Lung volume was continuously below FRC, and as a consequence P(IT) remained negative during decompression in all situations, including with positive Paw. Compared with manual bag or CC alone, CFI with positive Paw limited the fall in lung volume and resulted in larger positive and negative P(IT) variations. Positive Paw with CFI significantly augmented ventilation induced by CC. Recordings in patients confirmed a major loss of lung volume below FRC during CPR, even with positive Paw. Compared with manual bag ventilation, positive Paw associated with CFI limits the loss in lung volume, enhances CC-induced positive P(IT), maintains negative P(IT) during decompression, and generates more alveolar ventilation.


Asunto(s)
Ventilación con Presión Positiva Intermitente/métodos , Tórax/fisiología , Volumen de Ventilación Pulmonar/fisiología , Reanimación Cardiopulmonar/métodos , Descompresión/métodos , Paro Cardíaco/fisiopatología , Humanos , Insuflación/métodos , Pulmón/fisiología , Modelos Biológicos , Presión , Respiración , Respiración Artificial/métodos , Ventilación/métodos
4.
Chest ; 143(4): 927-938, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23187649

RESUMEN

BACKGROUND: Diaphragmatic muscle contractions triggered by ventilator insuffl ations constitute a form of patient-ventilator interaction referred to as "entrainment," which is usually unrecognized in critically ill patients. Our objective was to review tracings, which also included muscular activity, obtained in sedated patients who were mechanically ventilated to describe the entrainment events and their characteristics. The term "reverse triggering" was adopted to describe the ventilator-triggered muscular efforts. METHODS: Over a 3-month period, recordings containing fl ow, airway pressure, and esophageal pressure or electrical activity of the diaphragm were reviewed. Recordings were obtained from a series of consecutive heavily sedated patients ventilated with an assist-control mode of ventilation for ARDS. The duration of entrainment, the entrainment ratio, and the phase difference elapsing between the commencement of the ventilator and neural breaths were evaluated. RESULTS: The tracings of eight consecutive patients with ARDS were reviewed; they all showed different forms of entrainment. Reverse triggering occurred over a portion varying from 12% to 100% of the total recording period. Seven patients had a 1:1 mechanical insuffl ation to diaphragmatic contractions ratio; this coexisted with a 1:2 ratio in one patient and 1:2 and 1:3 ratios in another. One patient exhibited only a 1:2 ratio. The frequency of reverse-triggered breaths had a mean coeffi cient of variability of , 5%, very close to the variability of mechanical breaths. CONCLUSIONS: To our knowledge, this is the fi rst time that the presence of respiratory entrainment in sedated, critically ill adult patients who are mechanically ventilated has been documented. The "reverse-triggered" breaths illustrate a new form of neuromechanical coupling with potentially important clinical consequences.


Asunto(s)
Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/terapia , Mecánica Respiratoria/fisiología , Músculos Respiratorios/fisiopatología , Adulto , Anciano , Enfermedad Crítica/terapia , Diafragma/fisiopatología , Femenino , Humanos , Incidencia , Inhalación/fisiología , Masculino , Persona de Mediana Edad , Contracción Muscular/fisiología , Estudios Retrospectivos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...