Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(8): e202318454, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38185794

RESUMEN

Chiral metallo-supramolecular fibres can be easily obtained by mixing a chloroform solution of a phenylacetylene monomer (PA) that bears a chiral sulfoxide group as pendant, with different equivalents of a methanolic solution of AgClO4 . Thus, while the PA is found molecularly dissolved in chloroform, the addition of Ag+ ions induce its aggregation through the formation of an axially chiral metallo-supramolecular aggregate with high thermal stable properties. In this case, the ability of the metal ion to coordinate the PA triple bond, combined with the argentophilicity of the metal ion and the planarity of the phenylacetylene drives to the formation of a helical coordination polymer, whose P or M axial chirality is determined by the chirality of the sulfoxide used as substituent of the PA. Depending on the PA/Ag+ (mol/mol) ratio, it is possible to tune the morphology of the metallo-supramolecular aggregate from chiral fibers to chiral gel.

2.
Nat Commun ; 14(1): 3348, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291098

RESUMEN

Supramolecular and covalent polymers share multiple structural effects such as communication mechanisms among monomer repeating units, which are related to their axial helical structure. Herein, a unique multi-helical material combining information from both metallosupramolecular and covalent helical polymers is presented. In this system, the helical structure described by the poly(acetylene) (PA) backbone (cis-cisoidal, cis-transoidal) guides the pendant groups in a fashion where a tilting degree emerges between a pendant and the adjacent ones. As a result, a multi-chiral material is formed comprising four or five axial motifs when the polyene skeleton adopts either a cis-transoidal or cis-cisoidal configuration: the two coaxial helices-internal and external-and the two or three chiral axial motifs described by the bispyridyldichlorido PtII complex array. These results show that complex multi-chiral materials can be obtained by polymerizing appropriate monomers that combine both point chirality and the ability to generate chiral supramolecular assemblies.


Asunto(s)
Acetileno , Polímeros , Polímeros/química , Estereoisomerismo , Acetileno/química
3.
Nat Commun ; 14(1): 1742, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36990975

RESUMEN

The helix reversal is a structural motif found in helical polymers in the solid state, but whose existence is elusive in solution. Herein, we have shown how the photochemical electrocyclization (PEC) of poly(phenylacetylene)s (PPAs) can be used to determine not only the presence of helix reversals in polymer solution, but also to estimate the screw sense excess. To perform these studies, we used a library of well folded PPAs and different copolymers series made by enantiomeric comonomers that show chiral conflict effect. The results obtained indicate that the PEC of a PPA will depend on the helical scaffold adopted by the PPA backbone and on its folding degree. Then, from these studies it is possible to determine the screw sense excess of a PPA, highly important in applications such as chiral stationary phases in HPLC or asymmetric synthesis.

4.
Angew Chem Int Ed Engl ; 61(33): e202207623, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35731840

RESUMEN

Helical polymers such as poly(phenylacetylene)s (PPAs) are interesting materials due to the possibility of tuning their helical scaffold (sense and elongation) once they have been prepared and by the presence of external stimuli. The main limitation in the application of PPAs is their poor photostability. These polymers degrade under visible light exposure through a photochemical electrocyclization process. In this work, it was demonstrated, through a selected example, how the photochemical degradation in PPAs is directly related to their dynamic helical behavior. Thus, while PPAs with dynamic helical structures show poor photostability under UV/Vis light exposure, poly-(R)-1, bearing an enantiopure sulfoxide group as pendant group and designed to have a quasi-static helical behavior, shows a large photostability due to the restricted conformational composition at the polyene backbone, needed to orient the conjugated double bonds prior to the photochemical electrocyclization process and the subsequent degradation of the material.


Asunto(s)
Tornillos Óseos , Polímeros , Acetileno/análogos & derivados , Polímeros/química , Estereoisomerismo
5.
Angew Chem Int Ed Engl ; 60(15): 8095-8103, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33332770

RESUMEN

Photochemical electrocyclization of poly(phenylacetylene)s (PPAs) is used for the structural elucidation of a polyene backbone. This method not only allows classification of PPAs in cis-cisoidal (ω1 <90°) or cis-transoidal structures (ω1 >90°), but also approximating ω1 . A PPA solution is illuminated with visible light and monitoring the photochemical electrocyclization of the PPA helix by measuring the ECD spectra at different times. PPAs with a cis-cisoidal structure show a reduction of the ECD signal of at least 50 % before 30 min of irradiation, while cis-transoidal helices need much longer time because the transoidal bond must be isomerized. The different cis-cisoidal and cis-transoidal helices require different times to decrease their ECD signal by 50 % (t1/2 ), depending on the degree of compression or stretching of the helix, establishing a relationship between the secondary structure adopted by PPA (ω1 ) and the time required to lose the ECD vinylic signal by light irradiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA