Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Heart Assoc ; 10(16): e019862, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34387094

RESUMEN

Background Thoracic aortic aneurysms (TAAs) occur because of abnormal remodeling of aortic extracellular matrix and are accompanied by the emergence of proteolytically active myofibroblasts. The microRNA miR-133a regulates cellular phenotypes and is reduced in clinical TAA specimens. This study tested the hypothesis that miR-133a modulates aortic fibroblast phenotype, and overexpression by lentivirus attenuates the development of TAA in a murine model. Methods and Results TAA was induced in mice. Copy number of miR-133a was reduced in TAA tissue and linear regression analysis confirmed an inverse correlation between aortic diameter and miR-133a. Analyses of phenotypic markers revealed an mRNA expression profile consistent with myofibroblasts in TAA tissue. Fibroblasts were isolated from the thoracic aortae of mice with/without TAA. When compared with controls, miR-133a was reduced, migration was increased, adhesion was reduced, and the ability to contract a collagen disk was increased. Overexpression/knockdown of miR-133a controlled these phenotypes. After TAA induction in mice, a single tail-vein injection of either miR-133a overexpression or scrambled sequence (control) lentivirus was performed. Overexpression of miR-133a attenuated TAA development. The pro-protein convertase furin was confirmed to be a target of miR-133a by luciferase reporter assay. Furin was elevated in this murine model of TAA and repressed by miR-133a replacement in vivo resulting in reduced proteolytic activation. Conclusions miR-133a regulates aortic fibroblast phenotype and over-expression prevented the development of TAA in a murine model. These findings suggest that stable alterations in aortic fibroblasts are associated with development of TAA and regulation by miR-133a may lead to a novel therapeutic strategy.


Asunto(s)
Aorta Torácica/metabolismo , Aneurisma de la Aorta Torácica/prevención & control , Fibroblastos/metabolismo , Terapia Genética , MicroARNs/genética , Remodelación Vascular , Animales , Aorta Torácica/patología , Aneurisma de la Aorta Torácica/inducido químicamente , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/metabolismo , Cloruro de Calcio , Adhesión Celular , Movimiento Celular , Células Cultivadas , Dilatación Patológica , Modelos Animales de Enfermedad , Fibroblastos/patología , Furina/genética , Furina/metabolismo , Vectores Genéticos , Lentivirus/genética , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA