Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Metab Eng ; 83: 193-205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631458

RESUMEN

Consolidated bioprocessing (CBP) of lignocellulosic biomass holds promise to realize economic production of second-generation biofuels/chemicals, and Clostridium thermocellum is a leading candidate for CBP due to it being one of the fastest degraders of crystalline cellulose and lignocellulosic biomass. However, CBP by C. thermocellum is approached with co-cultures, because C. thermocellum does not utilize hemicellulose. When compared with a single-species fermentation, the co-culture system introduces unnecessary process complexity that may compromise process robustness. In this study, we engineered C. thermocellum to co-utilize hemicellulose without the need for co-culture. By evolving our previously engineered xylose-utilizing strain in xylose, an evolved clonal isolate (KJC19-9) was obtained and showed improved specific growth rate on xylose by ∼3-fold and displayed comparable growth to a minimally engineered strain grown on the bacteria's naturally preferred substrate, cellobiose. To enable full xylan deconstruction to xylose, we recombinantly expressed three different ß-xylosidase enzymes originating from Thermoanaerobacterium saccharolyticum into KJC19-9 and demonstrated growth on xylan with one of the enzymes. This recombinant strain was capable of co-utilizing cellulose and xylan simultaneously, and we integrated the ß-xylosidase gene into the KJC19-9 genome, creating the KJCBXint strain. The strain, KJC19-9, consumed monomeric xylose but accumulated xylobiose when grown on pretreated corn stover, whereas the final KJCBXint strain showed significantly greater deconstruction of xylan and xylobiose. This is the first reported C. thermocellum strain capable of degrading and assimilating hemicellulose polysaccharide while retaining its cellulolytic capabilities, unlocking significant potential for CBP in advancing the bioeconomy.


Asunto(s)
Clostridium thermocellum , Ingeniería Metabólica , Polisacáridos , Clostridium thermocellum/metabolismo , Clostridium thermocellum/genética , Polisacáridos/metabolismo , Polisacáridos/genética , Xilosa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Celulosa/metabolismo , Xilosidasas/metabolismo , Xilosidasas/genética
2.
HardwareX ; 16: e00493, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045919

RESUMEN

Although microparticles are frequently used in chemistry and biology, their effectiveness largely depends on the homogeneity of their particle size distribution. Microfluidic devices to separate and purify particles based on their size have been developed, but many require expensive cleanroom manufacturing processes. A cost-effective, passive microfluidic separator is presented, capable of efficiently sorting and purifying particles spanning the size range of 15 µm to 40 µm. Fabricated from Polymethyl Methacrylate (PMMA) substrates using laser ablation, this device circumvents the need for cleanroom facilities. Prior to fabrication, rigorous optimization of the device's design was carried out through computational simulations conducted in COMSOL Multiphysics. To gauge its performance, chitosan microparticles were employed as a test case. The results were notably promising, achieving a precision of 96.14 %. This quantitative metric underscores the device's precision and effectiveness in size-based particle separation. This low-cost and accessible microfluidic separator offers a pragmatic solution for laboratories and researchers seeking precise control over particle sizes, without the constraints of expensive manufacturing environments. This innovation not only mitigates the limitations tied to traditional cleanroom-based fabrication but also widens the horizons for various applications within the realms of chemistry and biology.

3.
Multisens Res ; 36(8): 725-825, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37734735

RESUMEN

This is the first systematic review that focuses on the influence of product-intrinsic and extrinsic sounds on the chemical senses involving both food and aroma stimuli. This review has a particular focus on all methodological details (stimuli, experimental design, dependent variables, and data analysis techniques) of 95 experiments, published in 83 publications from 2012 to 2023. 329 distinct crossmodal auditory-chemosensory associations were uncovered across this analysis. What is more, instead of relying solely on static figures and tables, we created a first-of-its-kind comprehensive Power BI dashboard (interactive data visualization tool by Microsoft) on methodologies and significant findings, incorporating various filters and visualizations allowing readers to explore statistics for specific subsets of experiments. We believe that this review can be helpful for researchers and practitioners working in the food and beverage industry and beyond these scopes (e.g., cosmetics). Theoretical and practical implications discussed in this article point to computational approaches that facilitate decision-making regarding multisensory experimental methodology design.


Asunto(s)
Publicaciones , Sonido , Humanos
4.
Nanomaterials (Basel) ; 13(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37299685

RESUMEN

Gene delivery has emerged as a promising alternative to conventional treatment approaches, allowing for the manipulation of gene expression through gene insertion, deletion, or alteration. However, the susceptibility of gene delivery components to degradation and challenges associated with cell penetration necessitate the use of delivery vehicles for effective functional gene delivery. Nanostructured vehicles, such as iron oxide nanoparticles (IONs) including magnetite nanoparticles (MNPs), have demonstrated significant potential for gene delivery applications due to their chemical versatility, biocompatibility, and strong magnetization. In this study, we developed an ION-based delivery vehicle capable of releasing linearized nucleic acids (tDNA) under reducing conditions in various cell cultures. As a proof of concept, we immobilized a CRISPR activation (CRISPRa) sequence to overexpress the pink1 gene on MNPs functionalized with polyethylene glycol (PEG), 3-[(2-aminoethyl)dithio]propionic acid (AEDP), and a translocating protein (OmpA). The nucleic sequence (tDNA) was modified to include a terminal thiol group and was conjugated to AEDP's terminal thiol via a disulfide exchange reaction. Leveraging the natural sensitivity of the disulfide bridge, the cargo was released under reducing conditions. Physicochemical characterizations, including thermogravimetric analysis (TGA) and Fourier-transform infrared (FTIR) spectroscopy, confirmed the correct synthesis and functionalization of the MNP-based delivery carriers. The developed nanocarriers exhibited remarkable biocompatibility, as demonstrated by the hemocompatibility, platelet aggregation, and cytocompatibility assays using primary human astrocytes, rodent astrocytes, and human fibroblast cells. Furthermore, the nanocarriers enabled efficient cargo penetration, uptake, and endosomal escape, with minimal nucleofection. A preliminary functionality test using RT-qPCR revealed that the vehicle facilitated the timely release of CRISPRa vectors, resulting in a remarkable 130-fold overexpression of pink1. We demonstrate the potential of the developed ION-based nanocarrier as a versatile and promising gene delivery vehicle with potential applications in gene therapy. The developed nanocarrier is capable of delivering any nucleic sequence (up to 8.2 kb) once it is thiolated using the methodology explained in this study. To our knowledge, this represents the first MNP-based nanocarrier capable of delivering nucleic sequences under specific reducing conditions while preserving functionality.

5.
Heliyon ; 9(6): e16974, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37346362

RESUMEN

There is a growing demand for nutritional, functional, and eco-friendly dairy products, which has increased the need for research regarding alternative and sustainable protein sources. Plant-based, single-cell (SCP), and recombinant proteins are being explored as alternatives to dairy proteins. Plant-Based Proteins (PBPs) are commonly used to replace total dairy protein. However, PBPs are generally mixed with dairy proteins to improve their functional properties, which makes them dependent on animal protein sources. In contrast, single-Cell Proteins (SCPs) and recombinant dairy proteins are promising alternatives for dairy protein replacement since they provide nutritional components, essential amino acids, and high protein yield and can use industrial and agricultural waste as carbon sources. Although alternative protein sources offer numerous advantages over conventional dairy proteins, several technical and sensory challenges must be addressed to fully incorporate them into cheese and yogurt products. Future research can focus on improving the functional and sensory properties of alternative protein sources and developing new processing technologies to optimize their use in dairy products. This review highlights the current status of alternative dairy proteins in cheese and yogurt, their functional properties, and the challenges of their use in these products.

6.
Front Bioeng Biotechnol ; 11: 1184973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229494

RESUMEN

The limited delivery of cargoes at the cellular level is a significant challenge for therapeutic strategies due to the presence of numerous biological barriers. By immobilizing the Buforin II (BUF-II) peptide and the OmpA protein on magnetite nanoparticles, a new family of cell-penetrating nanobioconjugates was developed in a previous study. We propose in this study to extend this strategy to silica nanoparticles (SNPs) and silanized fullerenol (F) as nanostructured supports for conjugating these potent cell-penetrating agents. The same molecule conjugated to distinct nanomaterials may interact with subcellular compartments differently. On the obtained nanobioconjugates (OmpA-SNPs, BUF-II-PEG12-SNPs, OmpA-F, and BUF-II-PEG12-F), physicochemical characterization was performed to evaluate their properties and confirm the conjugation of these translocating agents on the nanomaterials. The biocompatibility, toxicity, and internalization capacity of nanobioconjugates in Vero cells and THP-1 cells were evaluated in vitro. Nanobioconjugates had a high internalization capacity in these cells without affecting their viability, according to the findings. In addition, the nanobioconjugates exhibited negligible hemolytic activity and a low tendency to induce platelet aggregation. In addition, the nanobioconjugates exhibited distinct intracellular trafficking and endosomal escape behavior in these cell lines, indicating their potential for addressing the challenges of cytoplasmic drug delivery and the development of therapeutics for the treatment of lysosomal storage diseases. This study presents an innovative strategy for conjugating cell-penetrating agents using silica nanoparticles and silanized fullerenol as nanostructured supports, which has the potential to enhance the efficacy of cellular drug delivery.

7.
Front Bioeng Biotechnol ; 11: 1176557, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180035

RESUMEN

Microfluidics is an interdisciplinary field that encompasses both science and engineering, which aims to design and fabricate devices capable of manipulating extremely low volumes of fluids on a microscale level. The central objective of microfluidics is to provide high precision and accuracy while using minimal reagents and equipment. The benefits of this approach include greater control over experimental conditions, faster analysis, and improved experimental reproducibility. Microfluidic devices, also known as labs-on-a-chip (LOCs), have emerged as potential instruments for optimizing operations and decreasing costs in various of industries, including pharmaceutical, medical, food, and cosmetics. However, the high price of conventional prototypes for LOCs devices, generated in clean room facilities, has increased the demand for inexpensive alternatives. Polymers, paper, and hydrogels are some of the materials that can be utilized to create the inexpensive microfluidic devices covered in this article. In addition, we highlighted different manufacturing techniques, such as soft lithography, laser plotting, and 3D printing, that are suitable for creating LOCs. The selection of materials and fabrication techniques will depend on the specific requirements and applications of each individual LOC. This article aims to provide a comprehensive overview of the numerous alternatives for the development of low-cost LOCs to service industries such as pharmaceuticals, chemicals, food, and biomedicine.

8.
Polymers (Basel) ; 15(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37050356

RESUMEN

The food and beverage industry is constantly evolving, and consumers are increasingly searching for premium products that not only offer health benefits but a pleasant taste. A viable strategy to accomplish this is through the altering of sensory profiles through encapsulation of compounds with unique flavors. We used this approach here to examine how brewing in the presence of yeast cells encapsulated in alginate affected the sensory profile of beer wort. Initial tests were conducted for various combinations of sodium alginate and calcium chloride concentrations. Mechanical properties (i.e., breaking force and elasticity) and stability of the encapsulates were then considered to select the most reliable encapsulating formulation to conduct the corresponding alcoholic fermentations. Yeast cells were then encapsulated using 3% (w/v) alginate and 0.1 M calcium chloride as a reticulating agent. Fourteen-day fermentations with this encapsulating formulation involved a Pilsen malt-based wort and four S. cerevisiae strains, three commercially available and one locally isolated. The obtained beer was aged in an amber glass container for two weeks at 4 °C. The color, turbidity, taste, and flavor profile were measured and compared to similar commercially available products. Cell growth was monitored concurrently with fermentation, and the concentrations of ethanol, sugars, and organic acids in the samples were determined via high-performance liquid chromatography (HPLC). It was observed that encapsulation caused significant differences in the sensory profile between strains, as evidenced by marked changes in the astringency, geraniol, and capric acid aroma production. Three repeated batch experiments under the same conditions revealed that cell viability and mechanical properties decreased substantially, which might limit the reusability of encapsulates. In terms of ethanol production and substrate consumption, it was also observed that encapsulation improved the performance of the locally isolated strain.

9.
Biomolecules ; 13(3)2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36979500

RESUMEN

The molecule (2S)-naringenin is a scaffold molecule with several nutraceutical properties. Currently, (2S)-naringenin is obtained through chemical synthesis and plant isolation. However, these methods have several drawbacks. Thus, heterologous biosynthesis has emerged as a viable alternative to its production. Recently, (2S)-naringenin production studies in Escherichia coli have used different tools to increase its yield up to 588 mg/L. In this study, we designed and assembled a bio-factory for (2S)-naringenin production. Firstly, we used several parametrized algorithms to identify the shortest pathway for producing (2S)-naringenin in E. coli, selecting the genes phenylalanine ammonia lipase (pal), 4-coumarate: CoA ligase (4cl), chalcone synthase (chs), and chalcone isomerase (chi) for the biosynthetic pathway. Then, we evaluated the effect of oxygen transfer on the production of (2S)-naringenin at flask (50 mL) and bench (4 L culture) scales. At the flask scale, the agitation rate varied between 50 rpm and 250 rpm. At the bench scale, the dissolved oxygen was kept constant at 5% DO (dissolved oxygen) and 40% DO, obtaining the highest (2S)-naringenin titer (3.11 ± 0.14 g/L). Using genome-scale modeling, gene expression analysis (RT-qPCR) of oxygen-sensitive genes was obtained.


Asunto(s)
Escherichia coli , Flavanonas , Escherichia coli/genética , Escherichia coli/metabolismo , Plantas/metabolismo , Expresión Génica
10.
Front Chem ; 10: 974218, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186591

RESUMEN

Cell-penetrating agents based on functionalized nanoplatforms have emerged as a promising approach for developing more efficient and multifunctional delivery vehicles for treating various complex diseases that require reaching different intracellular compartments. Our previous work has shown that achieving full cellular coverage and high endosomal escape rates is possible by interfacing magnetite nanoparticles with potent translocating peptides such as Buforin II (BUF-II). In this work, we extended such an approach to two graphene oxide (GO)-based nanoplatforms functionalized with different surface chemistries to which the peptide molecules were successfully conjugated. The developed nanobioconjugates were characterized via spectroscopic (FTIR, Raman), thermogravimetric, and microscopic (SEM, TEM, and AFM) techniques. Moreover, biocompatibility was assessed via standardized hemocompatibility and cytotoxicity assays in two cell lines. Finally, cell internalization and coverage and endosomal escape abilities were estimated with the aid of confocal microscopy analysis of colocalization of the nanobioconjugates with Lysotracker Green®. Our findings showed coverage values that approached 100% for both cell lines, high biocompatibility, and endosomal escape levels ranging from 30 to 45% and 12-24% for Vero and THP-1 cell lines. This work provides the first routes toward developing the next-generation, carbon-based, cell-penetrating nanovehicles to deliver therapeutic agents. Further studies will be focused on elucidating the intracellular trafficking pathways of the nanobioconjugates to reach different cellular compartments.

11.
Sci Rep ; 12(1): 15045, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057729

RESUMEN

Mucopolysaccharidosis IV A (MPS IVA) is a lysosomal disorder caused by mutations in the GALNS gene. Consequently, the glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate accumulate in the lysosomal lumen. Although enzyme replacement therapy has shown essential advantages for the patients, several challenges remain to overcome, such as the limited impact on the bone lesion and recovery of oxidative profile. Recently, we validated a CRISPR/nCas9-based gene therapy with promising results in an in vitro MPS IVA model. In this study, we have expanded the use of this CRISPR/nCas9 system to several MPS IVA fibroblasts carrying different GALNS mutations. Considering the latent need to develop more safety vectors for gene therapy, we co-delivered the CRISPR/nCas9 system with a novel non-viral vector based on magnetoliposomes (MLPs). We found that the CRISPR/nCas9 treatment led to an increase in enzyme activity between 5 and 88% of wild-type levels, as well as a reduction in GAGs accumulation, lysosomal mass, and mitochondrial-dependent oxidative stress, in a mutation-dependent manner. Noteworthy, MLPs allowed to obtain similar results to those observed with the conventional transfection agent lipofectamine. Overall, these results confirmed the potential of CRISPR/nCas9 as a genome editing tool for treating MPS IVA. We also demonstrated the potential use of MLPs as a novel delivery system for CRISPR/nCas9-based therapies.


Asunto(s)
Condroitinsulfatasas , Mucopolisacaridosis , Mucopolisacaridosis IV , Nanopartículas , Condroitinsulfatasas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Óxido Ferrosoférrico/uso terapéutico , Edición Génica , Glicosaminoglicanos , Humanos , Mucopolisacaridosis/genética , Mucopolisacaridosis/terapia , Mucopolisacaridosis IV/genética , Mucopolisacaridosis IV/terapia
12.
Heliyon ; 8(3): e09145, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35846480

RESUMEN

Antibiotic resistance has become a major public health problem generated by their excessive and inappropriate use. This is worrisome because multiple microbial infections that could traditionally be treated without major complications are now considerably challenging to treat. In this regard, research in this field has been focused on searching for new molecules capable of arresting these microbial infections with high effectiveness, including antimicrobial peptides (AMP) and various nanomaterials. Here, we proposed a novel topical hydrogel treatment based on a polymeric network of gelatin-polyvinyl alcohol-hyaluronic acid encapsulating a graphene oxide (GO) nanoconjugate on which silver nanoparticles (Ag NPs) have been grown. This treatment is intended to be stable, biocompatible, non-toxic, pleasant to skin contact, provide bioavailability of the active agent for a prolonged period in the affected skin area where its application is required and inhibit microbial growth effectively. The nanocomposite hydrogels were characterized in terms of microstructure, thermal resistance, rheological behavior, particle size distribution, texture profile and physical stability, as well as a one-month accelerated stability study. The satisfactory results in terms of physical chemistry, stability on storage modulus (G'), TSI values, and microstructure allowed choosing some points of the experimental design to encapsulate the GO-Ag NPs nanoconjugates. The biological evaluation of these nanocomposites showed that the treatments are biocompatible as they have a very low hemolytic effect (less than 5%) and a moderate platelet aggregating capacity (35%-45%). Finally, 100% of bacterial growth was inhibited by the action of the topical nanocomposite hydrogel treatments. These results led to affirm that these treatments can have an excellent performance in this application as well as in wound healing and dressing, bioadhesives, tissue engineering, and other biomedical applications.

13.
Membranes (Basel) ; 12(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35877911

RESUMEN

Antibiotic resistance is a worldwide public health problem due to the costs and mortality rates it generates. However, the large pharmaceutical industries have stopped searching for new antibiotics because of their low profitability, given the rapid replacement rates imposed by the increasingly observed resistance acquired by microorganisms. Alternatively, antimicrobial peptides (AMPs) have emerged as potent molecules with a much lower rate of resistance generation. The discovery of these peptides is carried out through extensive in vitro screenings of either rational or non-rational libraries. These processes are tedious and expensive and generate only a few AMP candidates, most of which fail to show the required activity and physicochemical properties for practical applications. This work proposes implementing an artificial intelligence algorithm to reduce the required experimentation and increase the efficiency of high-activity AMP discovery. Our deep learning (DL) model, called AMPs-Net, outperforms the state-of-the-art method by 8.8% in average precision. Furthermore, it is highly accurate to predict the antibacterial and antiviral capacity of a large number of AMPs. Our search led to identifying two unreported antimicrobial motifs and two novel antimicrobial peptides related to them. Moreover, by coupling DL with molecular dynamics (MD) simulations, we were able to find a multifunctional peptide with promising therapeutic effects. Our work validates our previously proposed pipeline for a more efficient rational discovery of novel AMPs.

14.
Membranes (Basel) ; 12(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35736307

RESUMEN

At the beginning of 2020, the pandemic caused by the SARS-CoV-2 virus led to the fast sequencing of its genome to facilitate molecular engineering strategies to control the pathogen's spread. The spike (S) glycoprotein has been identified as the leading therapeutic agent due to its role in localizing the ACE2 receptor in the host's pulmonary cell membrane, binding, and eventually infecting the cells. Due to the difficulty of delivering bioactive molecules to the intracellular space, we hypothesized that the S protein could serve as a source of membrane translocating peptides. AHB-1, AHB-2, and AHB-3 peptides were identified and analyzed on a membrane model of DPPC (dipalmitoylphosphatidylcholine) using molecular dynamics (MD) simulations. An umbrella sampling approach was used to quantify the energy barrier necessary to cross the boundary (13.2 to 34.9 kcal/mol), and a flat-bottom pulling helped to gain a deeper understanding of the membrane's permeation dynamics. Our studies revealed that the novel peptide AHB-1 exhibited comparable penetration potential of already known potent cell-penetrating peptides (CPPs) such as TP2, Buforin II, and Frenatin 2.3s. Results were confirmed by in vitro analysis of the peptides conjugated to chitosan nanoparticles, demonstrating its ability to reach the cytosol and escape endosomes, while maintaining high biocompatibility levels according to standardized assays.

15.
Heliyon ; 8(3): e09031, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35284671

RESUMEN

Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a rare X-linked recessive disease caused by a deficiency of the lysosomal enzyme iduronate-2-sulfatase (IDS), which activates intracellular accumulation of nonmetabolized glycosaminoglycans such as heparan sulfate and dermatan sulfate. This accumulation causes severe damage to several tissues, principally the central nervous system. Previously, we identified 187 IDS-protein interactions in the mouse brain. To validate a subset of these interactions, we selected and cloned the coding regions of 10 candidate genes to perform a targeted yeast two-hybrid assay. The results allowed the identification of the physical interaction of IDS with LSAMP and SYT1. Although the physiological relevance of these complexes is unknown, recent advances allow us to point out that these interactions could be involved in vesicular trafficking of IDS through the interaction with SYT1, as well as to the ability to form a transcytosis module between the cellular components of the blood-brain-barrier (BBB) through its interaction with LSAMP. These results may shed light on the role of IDS on cellular homeostasis and may also contribute to the understanding of MPS II physiopathology and the development of novel therapeutic strategies to transport recombinant IDS through the brain endothelial cells toward the brain parenchyma.

16.
Pharmaceutics ; 14(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35214047

RESUMEN

Magnetite nanoparticles (MNPs) have gained significant attention in several applications for drug delivery. However, there are some issues related to cell penetration, especially in the transport of cargoes that show limited membrane passing. A widely studied strategy to overcome this problem is the encapsulation of the MNPs into liposomes to form magnetoliposomes (MLPs), which are capable of fusing with membranes to achieve high delivery rates. This study presents a low-cost microfluidic approach for the synthesis and purification of MLPs and their biocompatibility and functional testing via hemolysis, platelet aggregation, cytocompatibility, internalization, and endosomal escape assays to determine their potential application in gastrointestinal delivery. The results show MLPs with average hydrodynamic diameters ranging from 137 ± 17 nm to 787 ± 45 nm with acceptable polydispersity index (PDI) values (below 0.5). In addition, we achieved encapsulation efficiencies between 20% and 90% by varying the total flow rates (TFRs), flow rate ratios (FRRs), and MNPs concentration. Moreover, remarkable biocompatibility was attained with the obtained MLPs in terms of hemocompatibility (hemolysis below 1%), platelet aggregation (less than 10% with respect to PBS 1×), and cytocompatibility (cell viability higher than 80% in AGS and Vero cells at concentrations below 0.1 mg/mL). Additionally, promising delivery results were obtained, as evidenced by high internalization, low endosomal entrapment (AGS cells: PCC of 0.28 and covered area of 60% at 0.5 h and PCC of 0.34 and covered area of 99% at 4 h), and negligible nuclear damage and DNA condensation. These results confirm that the developed microfluidic devices allow high-throughput production of MLPs for potential encapsulation and efficient delivery of nanostructured cell-penetrating agents. Nevertheless, further in vitro analysis must be carried out to evaluate the prevalent intracellular trafficking routes as well as to gain a detailed understanding of the existing interactions between nanovehicles and cells.

17.
N Biotechnol ; 69: 18-27, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217201

RESUMEN

Fructo-oligosaccharides (FOS) are one of the most well-studied and commercialized prebiotics. FOS can be obtained either by controlled hydrolysis of inulin or by sucrose transfructosylation. FOS produced from sucrose are typically classified as short-chain FOS (scFOS), of which the best known are 1-kestotriose (GF2), 1,1-kestotetraose (GF3), and 1,1,1-kestopentaose (GF4), produced by fructosyltransferases (FTases) or ß-fructofuranosidases. In previous work, FOS production was studied using the Aspergillus oryzae N74 strain, its ftase gene was heterologously expressed in Komagataella phaffii (Pichia pastoris), and the enzyme's tertiary structure modeled. More recently, residues that may be involved in protein-substrate interactions were predicted. In this study, the aim was to experimentally validate previous in silico results by independently producing recombinant wild-type A. oryzae N74 FTase and three single-point mutations in Komagataella phaffii (Pichia pastoris). The R163A mutation virtually abolished the transfructosylating activity, indicating a requirement for the positively charged arginine residue in the catalytic domain D. In contrast, transfructosylating activity was improved by introducing the mutations V242E or F254H, with V242E resulting in higher production of GF2 without affecting that of GF3. Interestingly, initial sucrose concentration, reaction temperature and the presence of metal cofactors did not affect the enhanced activity of mutant V242E. Overall, these results shed light on the mechanism of transfructosylation of the FTase from A. oryzae and expand considerations regarding the design of biotechnological processes for specific FOS production.


Asunto(s)
Aspergillus oryzae , Aspergillus oryzae/genética , Hexosiltransferasas , Oligosacáridos , Pichia/genética , Saccharomycetales , Sacarosa
18.
Polymers (Basel) ; 13(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34883582

RESUMEN

Gelatin and chitosan nanoparticles have been widely used in pharmaceutical, biomedical, and nanofood applications due to their high biocompatibility and biodegradability. This study proposed a highly efficient synthesis method for type B gelatin and low-molecular-weight (LMW) chitosan nanoparticles. Gelatin nanoparticles (GNPs) were synthesized by the double desolvation method and the chitosan nanoparticles (CNPs) by the ionic gelation method. The sizes of the obtained CNPs and GNPs (373 ± 71 nm and 244 ± 67 nm, respectively) and zeta potential (+36.60 ± 3.25 mV and -13.42 ± 1.16 mV, respectively) were determined via dynamic light scattering. Morphology and size were verified utilizing SEM and TEM images. Finally, their biocompatibility was tested to assure their potential applicability as bioactive molecule carriers and cell-penetrating agents.

19.
Micromachines (Basel) ; 12(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34832789

RESUMEN

The discovery of new membrane-active peptides (MAPs) is an area of considerable interest in modern biotechnology considering their ample applicability in several fields ranging from the development of novel delivery vehicles (via cell-penetrating peptides) to responding to the latent threat of antibiotic resistance (via antimicrobial peptides). Different strategies have been devised for such discovery process, however, most of them involve costly, tedious, and low-efficiency methods. We have recently proposed an alternative route based on constructing a non-rationally designed library recombinantly expressed on the yeasts' surfaces. However, a major challenge is to conduct a robust and high-throughput screening of possible candidates with membrane activity. Here, we addressed this issue by putting forward low-cost microfluidic platforms for both the synthesis of Giant Unilamellar Vesicles (GUVs) as mimicking entities of cell membranes and for providing intimate contact between GUVs and homologues of yeasts expressing MAPs. The homologues were chitosan microparticles functionalized with the membrane translocating peptide Buforin II, while intimate contact was through passive micromixers with different channel geometries. Both microfluidic platforms were evaluated both in silico (via Multiphysics simulations) and in vitro with a high agreement between the two approaches. Large and stable GUVs (5-100 µm) were synthesized effectively, and the mixing processes were comprehensively studied leading to finding the best operating parameters. A serpentine micromixer equipped with circular features showed the highest average encapsulation efficiencies, which was explained by the unique mixing patterns achieved within the device. The microfluidic devices developed here demonstrate high potential as platforms for the discovery of novel MAPs as well as for other applications in the biomedical field such as the encapsulation and controlled delivery of bioactive compounds.

20.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502143

RESUMEN

CRISPR is a simple and cost-efficient gene-editing technique that has become increasingly popular over the last decades. Various CRISPR/Cas-based applications have been developed to introduce changes in the genome and alter gene expression in diverse systems and tissues. These novel gene-editing techniques are particularly promising for investigating and treating neurodegenerative diseases, including Parkinson's disease, for which we currently lack efficient disease-modifying treatment options. Gene therapy could thus provide treatment alternatives, revolutionizing our ability to treat this disease. Here, we review our current knowledge on the genetic basis of Parkinson's disease to highlight the main biological pathways that become disrupted in Parkinson's disease and their potential as gene therapy targets. Next, we perform a comprehensive review of novel delivery vehicles available for gene-editing applications, critical for their successful application in both innovative research and potential therapies. Finally, we review the latest developments in CRISPR-based applications and gene therapies to understand and treat Parkinson's disease. We carefully examine their advantages and shortcomings for diverse gene-editing applications in the brain, highlighting promising avenues for future research.


Asunto(s)
Edición Génica/métodos , Terapia Genética/métodos , Enfermedad de Parkinson/genética , Animales , Sistemas CRISPR-Cas , Humanos , Enfermedad de Parkinson/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA