Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 3187, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581235

RESUMEN

The application of adoptive T cell therapies, including those using chimeric antigen receptor (CAR)-modified T cells, to solid tumors requires combinatorial strategies to overcome immune suppression associated with the tumor microenvironment. Here we test whether the inflammatory nature of oncolytic viruses and their ability to remodel the tumor microenvironment may help to recruit and potentiate the functionality of CAR T cells. Contrary to our hypothesis, VSVmIFNß infection is associated with attrition of murine EGFRvIII CAR T cells in a B16EGFRvIII model, despite inducing a robust proinflammatory shift in the chemokine profile. Mechanistically, type I interferon (IFN) expressed following infection promotes apoptosis, activation, and inhibitory receptor expression, and interferon-insensitive CAR T cells enable combinatorial therapy with VSVmIFNß. Our study uncovers an unexpected mechanism of therapeutic interference, and prompts further investigation into the interaction between CAR T cells and oncolytic viruses to optimize combination therapy.


Asunto(s)
Inmunoterapia Adoptiva , Interferón beta/metabolismo , Virus Oncolíticos/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Quimiocinas/metabolismo , Terapia Combinada , Femenino , Interferón beta/genética , Activación de Linfocitos , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Viroterapia Oncolítica , Virus Oncolíticos/genética , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Bazo/inmunología
2.
NPJ Vaccines ; 5(1): 4, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31934358

RESUMEN

The avian influenza virus outbreak in 1997 highlighted the potential of the highly pathogenic H5N1 virus to cause severe disease in humans. Therefore, effective vaccines against H5N1 viruses are needed to counter the potential threat of a global pandemic. We have previously developed a fast-acting and efficacious vaccine against Ebola virus (EBOV) using the vesicular stomatitis virus (VSV) platform. In this study, we generated recombinant VSV-based H5N1 influenza virus vectors to demonstrate the feasibility of this platform for a fast-acting pan-H5 influenza virus vaccine. We chose multiple approaches regarding antigen design and genome location to define a more optimized vaccine approach. After the VSV-based H5N1 influenza virus constructs were recovered and characterized in vitro, mice were vaccinated by a single dose or prime/boost regimen followed by challenge with a lethal dose of the homologous H5 clade 1 virus. We found that a single dose of VSV vectors expressing full-length hemagglutinin (HAfl) were sufficient to provide 100% protection. The vaccine vectors were fast-acting as demonstrated by uniform protection when administered 3 days prior to lethal challenge. Moreover, single vaccination induced cross-protective H5-specific antibodies and protected mice against lethal challenge with various H5 clade 2 viruses, highlighting the potential of the VSV-based HAfl as a pan-H5 influenza virus emergency vaccine.

3.
EBioMedicine ; 49: 223-231, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31631035

RESUMEN

BACKGROUND: Ebola virus (EBOV), variant Makona, was the causative agent of the 2013-2016 West African epidemic responsible for almost 30,000 human infections and over 11,000 fatalities. During the epidemic, the development of several experimental vaccines was accelerated through human clinical trials. One of them, the vesicular stomatitis virus (VSV)-based vaccine VSV-EBOV, showed promising efficacy in a phase 3 clinical trial in Guinea and is currently used in the ongoing EBOV outbreak in the northeastern part of the Democratic Republic of the Congo (DRC). This vaccine expresses the EBOV-Kikwit glycoprotein from the 1995 outbreak as the immunogen. METHODS: Here we generated a VSV-based vaccine expressing the contemporary EBOV-Makona glycoprotein. We characterized the vaccine in tissue culture and analyzed vaccine efficacy in the cynomolgus macaque model. Subsequently, we determined the dose-dependent protective efficacy in nonhuman primates against lethal EBOV challenge. FINDINGS: We observed complete protection from disease with VSV-EBOV doses ranging from 1 × 107 to 1 × 101 plaque-forming units. Some protected animals receiving lower vaccine doses developed temporary low-level EBOV viremia. Control animals developed classical EBOV disease and reached euthanasia criteria within a week after challenge. This study demonstrates that very low doses of VSV-EBOV uniformly protect macaques against lethal EBOV challenge. INTERPRETATION: Our study provides missing pre-clinical data supporting the use of reduced VSV-EBOV vaccine doses without decreasing protective efficacy and at the same time increase vaccine safety and availability - two critical concerns in public health response. FUNDING: Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Asunto(s)
Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Vacunación , Vesiculovirus/inmunología , Animales , Citocinas/metabolismo , Relación Dosis-Respuesta Inmunológica , Femenino , Fiebre Hemorrágica Ebola/sangre , Fiebre Hemorrágica Ebola/virología , Inmunidad Humoral , Macaca fascicularis , Masculino , Análisis de Supervivencia
4.
Virus Genes ; 53(4): 501-515, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28447193

RESUMEN

The filoviruses, Ebola virus (EBOV), and Marburg virus (MARV), are among the most pathogenic viruses known to man and the causative agents of viral hemorrhagic fever outbreaks in Africa with case fatality rates of up to 90%. Nearly 30,000 infections were observed in the latest EBOV epidemic in West Africa; previous outbreaks were much smaller, typically only affecting less than a few hundred people. Compared to other diseases such as AIDS or Malaria with millions of cases annually, filovirus hemorrhagic fever (FHF) is one of the neglected infectious diseases. There are no licensed vaccines or therapeutics available to treat EBOV and MARV infections; therefore, these pathogens can only be handled in maximum containment laboratories and are classified as select agents. Under these limitations, a very few laboratories worldwide conducted basic research and countermeasure development for EBOV and MARV since their respective discoveries in 1967 (MARV) and 1976 (EBOV). In this review, we discuss several vaccine platforms against EBOV and MARV, which have been assessed for their protective efficacy in animal models of FHF. The focus is on the most promising approaches, which were accelerated in clinical development (phase I-III trials) during the EBOV epidemic in West Africa.


Asunto(s)
Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Enfermedad del Virus de Marburg/prevención & control , Marburgvirus/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Ebolavirus/genética , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Humanos , Enfermedad del Virus de Marburg/inmunología , Enfermedad del Virus de Marburg/virología , Marburgvirus/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...