Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 783: 146878, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-33865129

RESUMEN

Uranium (U) isotopic signatures and concentration in sediments are widely used as paleo-redox proxies, as the behavior of U is often controlled by bottom water oxygenation. Here, we investigated the processes controlling U accumulation in the sediments of Lake Nègre (Mediterranean Alps, South-East France) over the past 9200 years. Exceptionally high natural U concentrations (350-1250 µg·g-1) allowed the measurement of U along with other elements by high-resolution X-Ray Fluorescence core-scanning. Weathering and erosion proxies (Ti content, Zr/Al and K/Ti ratios) indicate that sedimentary inputs were controlled by Holocene climatic variations. After a period of low erosion during the Holocene Climatic Optimum, a major regime shift was recorded at 4.2 kyr BP when terrigenous fluxes consistently increased until present with high sensitivity to centennial-scale climatic events. Sedimentary organic matter (OM) inputs were dominated by terrigenous OM from the catchment soils until 2.4 kyr BP, as attested by carbon to nitrogen (C/N) and bromine to organic carbon (Br/TOC) ratios. From 2.4 kyr BP to present, lake primary production and soils equally contributed to sedimentary OM. Uranium fluxes to the sediments were well correlated to terrigenous OM fluxes from 7 kyr BP to present, showing that U supply to the lake was controlled by U scavenging in the soils of the watershed followed by transport of U bound to detrital organic particles. Higher U/OM ratios before 7 kyr BP likely reflect the development of the upstream wetland. The fluctuations of U sedimentary inputs appear to be independent of bottom water oxygenation, as estimated from constant Fe/Mn ratios and δ238U isotopic signatures, and rather controlled by the production, erosion and sedimentation of terrigenous OM. This finding confirms that the use of U (and potentially other metals with high affinity to OM) concentrations alone should be used with caution for paleo-redox reconstructions.

2.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33479173

RESUMEN

The long-term fate of uranium-contaminated sediments, especially downstream former mining areas, is a widespread environmental challenge. Essential for their management is the proper understanding of uranium (U) immobilization mechanisms in reducing environments. In particular, the long-term behavior of noncrystalline U(IV) species and their possible evolution to more stable phases in subsurface conditions is poorly documented, which limits our ability to predict U long-term geochemical reactivity. Here, we report direct evidence for the evolution of U speciation over 3,300 y in naturally highly U-enriched sediments (350-760 µg ⋅ g-1 U) from Lake Nègre (Mercantour Massif, Mediterranean Alps, France) by combining U isotopic data (δ238U and (234U/238U)) with U L3 -edge X-ray absorption fine structure spectroscopy. Constant isotopic ratios over the entire sediment core indicate stable U sources and accumulation modes, allowing for determination of the impact of aging on U speciation. We demonstrate that, after sediment deposition, mononuclear U(IV) species associated with organic matter transformed into authigenic polymeric U(IV)-silica species that might have partially converted to a nanocrystalline coffinite (UIVSiO4·nH2O)-like phase. This diagenetic transformation occurred in less than 700 y and is consistent with the high silica availability of sediments in which diatoms are abundant. It also yields consistency with laboratory studies that proposed the formation of colloidal polynuclear U(IV)-silica species, as precursors for coffinite formation. However, the incomplete transformation observed here only slightly reduces the potential lability of U, which could have important implications to evaluate the long-term management of U-contaminated sediments and, by extension, of U-bearing wastes in silica-rich subsurface environments.

3.
J Environ Radioact ; 222: 106324, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32892898

RESUMEN

Radium is a naturally occurring radioactive element commonly found at low levels in natural systems such as lacustrine or marine sediments. Anthropogenic activities including former uranium mining activities can lead to the dissemination of radium isotopes having high radiological toxicities, which potentially threaten the safety of nearby environments. Although radium mobility in oxidized environments is known to be largely governed by sorption/desorption onto Fe and Mn oxyhydroxides and coprecipitation with sulfate minerals (e.g. barite), little is known regarding its behavior under reducing conditions, which are the conditions typically encountered in organic-rich systems such as wetlands and lake sediments. The present study aims at understanding the behavior of long-lived radium isotopes (226Ra and 228Ra), during early diagenesis of lake sediments contaminated by former uranium mining activities. Solid and pore water concentrations of 226Ra and 228Ra were determined using ultra low background gamma spectrometry, which allowed improvement of detection limits and measurement accuracy. This study shows that the downcore distribution of radium isotopes is closely related to the reductive dissolution of iron and manganese oxyhydroxides below the sediment-water interface. The resulting diffusive fluxes of 226Ra and 228Ra (4.1 10-25 and 4.7 10-28 mol cm-2.s-1) are however significantly lower than other radium-impacted environments, such as uranium mill tailings pond and phosphate industry-impacted sediments, and are similar to those reported for natural marine environments. Hence, in the reduced lake sediments of Saint-Clement, the major fraction of radium is trapped by the solid phase, while early diagenesis only induces a slight mobility of this radioelement.


Asunto(s)
Minería , Monitoreo de Radiación , Radio (Elemento) , Uranio , Sedimentos Geológicos , Radio (Elemento)/análisis , Humedales
4.
Sci Adv ; 4(5): eaar4292, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29750197

RESUMEN

What are the long-term consequences of invasive species? After invasion, how long do ecosystems require to reach a new equilibrium? Answering these questions requires long-term, high-resolution data that are vanishingly rare. We combined the analysis of environmental DNA extracted from a lake sediment core, coprophilous fungi, and sedimentological analyses to reconstruct 600 years of ecosystem dynamics on a sub-Antarctic island and to identify the impact of invasive rabbits. Plant communities remained stable from AD 1400 until the 1940s, when the DNA of invasive rabbits was detected in sediments. Rabbit detection corresponded to abrupt changes of plant communities, with a continuous decline of a dominant plant species. Furthermore, erosion rate abruptly increased with rabbit abundance. Rabbit impacts were very fast and were stronger than the effects of climate change during the 20th century. Lake sediments can allow an integrated temporal analysis of ecosystems, revealing the impact of invasive species over time and improving our understanding of underlying mechanisms.


Asunto(s)
ADN , Ecosistema , Sedimentos Geológicos , Especies Introducidas , Lagos , Animales , Biodiversidad , Cambio Climático , Sedimentos Geológicos/química , Mamíferos/clasificación , Mamíferos/genética , Plantas/clasificación , Plantas/genética
5.
J Environ Radioact ; 162-163: 8-13, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27191741

RESUMEN

Knowledge of sedimentation rates in lakes is required to understand and quantify the geochemical processes involved in scavenging and remobilization of contaminants at the Sediment-Water Interface (SWI). The well-known 210Pb excess (210Pbex) method cannot be used for quantifying sedimentation rates in uranium-enriched catchments, as large amounts of 210Pb produced by weathering and human activities may dilute the atmospheric 210Pb. As an alternative dating method in these cases, we propose an original method based on 232Th decay series nuclides. This study focuses on an artificial lake located in a granitic catchment downstream from a former uranium mine site. The exponential decay of 228Ra excess (228Raex) with depth in two long cores yields sedimentation rates of 2.4 and 5.2 cm yr-1 respectively. These sedimentation rates lead to the attribution of the 137Cs activity peak observed at depth to the Chernobyl fallout event of 1986. The 228Raex method was also applied to two short cores which did not display the 137Cs peak, and mean sedimentation rates of 2.1 and 4.0 cm y-1 were deduced. The proposed method may replace the classical radiochronological methods (210Pbex, 137Cs) to determine sedimentation rates in granitic catchments.


Asunto(s)
Sedimentos Geológicos/química , Modelos Químicos , Radio (Elemento)/análisis , Contaminantes Radiactivos del Agua/análisis , Dióxido de Silicio
6.
Proc Natl Acad Sci U S A ; 111(44): 15647-52, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25313074

RESUMEN

Agricultural pesticide use has increased worldwide during the last several decades, but the long-term fate, storage, and transfer dynamics of pesticides in a changing environment are poorly understood. Many pesticides have been progressively banned, but in numerous cases, these molecules are stable and may persist in soils, sediments, and ice. Many studies have addressed the question of their possible remobilization as a result of global change. In this article, we present a retro-observation approach based on lake sediment records to monitor micropollutants and to evaluate the long-term succession and diffuse transfer of herbicides, fungicides, and insecticide treatments in a vineyard catchment in France. The sediment allows for a reliable reconstruction of past pesticide use through time, validated by the historical introduction, use, and banning of these organic and inorganic pesticides in local vineyards. Our results also revealed how changes in these practices affect storage conditions and, consequently, the pesticides' transfer dynamics. For example, the use of postemergence herbicides (glyphosate), which induce an increase in soil erosion, led to a release of a banned remnant pesticide (dichlorodiphenyltrichloroethane, DDT), which had been previously stored in vineyard soil, back into the environment. Management strategies of ecotoxicological risk would be well served by recognition of the diversity of compounds stored in various environmental sinks, such as agriculture soil, and their capability to become sources when environmental conditions change.


Asunto(s)
Ecosistema , Plaguicidas/química , Suelo/química , Aguas Residuales/química
7.
J Hum Evol ; 65(5): 585-93, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24034982

RESUMEN

The transition from the Lower to the Middle Paleolithic in the Levant is a crucial event in human evolution, since it may involve the arrival of a new human population. In the current study, we present thermoluminescence (TL) dates obtained from 32 burnt flints retrieved from the late Lower Paleolithic (Acheulo-Yabrudian) and Early Middle Paleolithic (Mousterian) layers of Misliya Cave, Mount Carmel, Israel. Early Middle Paleolithic industries rich in Levallois and laminar products were assigned mean ages ranging from ~250 to ~160 ka (thousands of years ago), suggesting a production of this industry during MIS 7 and the early part of MIS 6. The mean ages obtained for the samples associated with the Acheulo-Yabrudian (strengthened by an isochron analysis) indicate a production of this cultural complex ~250 ka ago, at the end of MIS 8. According to the Misliya TL dates, the transition from the Lower to the Middle Paleolithic in the site took place at the limit MIS 8/7 or during the early part of MIS 7. The dates, together with the pronounced differences in lithic technology strongly suggest the arrival of a new population during this period.


Asunto(s)
Arqueología/métodos , Fósiles , Datación Radiométrica , Migración Animal , Animales , Hominidae , Israel , Paleontología , Tecnología
8.
Ecology ; 94(12): 2767-80, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24597223

RESUMEN

While considerable insights on the ecological consequences of climate change have been gained from studies conducted on remote lakes, little has been done on lakes under direct human exposure. Ecosystem vulnerability and responses to climate warming might yet largely depend on the ecological state and thus on local anthropogenic pressures. We tested this hypothesis through a paleolimnological approach on three temperate large lakes submitted to rather similar climate warming but varying intensities of analogous local forcings (changes in nutrient inputs and fisheries management practices). Changes in the structure of the cladoceran community were considered as revealing for alterations, over the time, of the pelagic food web. Trajectories of the cladoceran communities were compared among the three study lakes (Lakes Geneva, Bourget, and Annecy) over the last 70-150 years. Generalized additive models were used to develop a hierarchical understanding of the respective roles of local stressors and climate warming in structuring cladoceran communities. The cladoceran communities were not equally affected by climate warming between lakes. In Lake Annecy, which is the most nutrient-limited, the cladoceran community was essentially controlled by local stressors, with very limited impact of climate. In contrast, the more nutrient-loaded Lakes Geneva and Bourget were more sensitive to climate warming, although the magnitude of their responses and the pathways under which climate warming affected the communities varied between the two lakes. Finally, our results demonstrated that lake vulnerability and responses to climate warming are modulated by lake trophic status but can also be altered by fisheries management practices through changes in fish predation pressure.


Asunto(s)
Cambio Climático , Ecosistema , Lagos , Zooplancton/fisiología , Animales , Cladóceros/fisiología , Francia , Factores de Tiempo
9.
Am J Phys Anthropol ; 135(4): 371-8, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18000894

RESUMEN

Paleontological analysis of remains from Wezmeh Cave in western Iran have yielded a Holocene Chalcolithic archeological assemblage, a rich Late Pleistocene carnivore faunal assemblage, and an isolated unerupted human maxillary premolar (P(3) or possibly P(4)). Species representation and U-series dating of faunal teeth place the carnivore assemblage during oxygen isotope stages (OIS) 3 and 2, and noninvasive gamma spectrometry dating of the human premolar places it at least as old as early OIS 2. The human premolar crown morphology is not diagnostic of late archaic versus early modern human affinities, but its buccolingual diameter places it at the upper limits of Late Pleistocene human P(3) and P(4) dimensions and separate from a terminal Pleistocene regional sample. Wezmeh Cave therefore provides additional Paleolithic human remains from the Zagros Mountains and further documents Late Pleistocene human association with otherwise carnivore-dominated cave assemblages.


Asunto(s)
Diente Premolar/anatomía & histología , Fósiles , Antropometría , Diente Premolar/química , Humanos , Irán , Isótopos de Oxígeno/análisis , Paleodontología , Espectrometría gamma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA