Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Fluoresc ; 32(5): 1959-1967, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35781766

RESUMEN

A novel cyanine 3 (Cy3)-based bio-conjugated sensor has been developed to detect target DNA or extracted RNA from COVID -19 samples using the fluorescence resonance energy transfer (FRET) experiment. A special sequence of the COVID -19 genome was selected as a complementary DNA (target DNA) part. The opposite chain of this target sequence was designed in 2 parts; one part was attached to the Cy3 organic dye (capture DNA or Cy3- DNA), and the other part was attached to the BHQ2 molecule (quencher DNA or BHQ2- DNA). The Cy3 molecule acts as a donor pair, and BHQ2 acts as an acceptor pair in the FRET experiment. The capture DNA and quencher DNA can form a sandwiched complex in the presence of target DNA. The formation of the entitled sandwiched hybrid causes the decrement of emission intensity of the Cy3 donor in bio-conjugated Cy3-DNA via energy transfer from Cy3 (as a donor) to BHQ2 (as an acceptor). Indeed, in the presence of non-complementary DNA, the pairing of DNA strands does not occur, the FRET phenomenon does not exist, and therefore fluorescence intensity of Cy3 does not decrease. Moreover, this biosensor was successfully applied to analyze real samples containing extracted RNA of COVID -19 prepared for the reverse transcriptase-polymerase chain reaction (RT-PCR) test, and the results were promising.


Asunto(s)
COVID-19 , Transferencia Resonante de Energía de Fluorescencia , ADN/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes , Humanos , ARN , SARS-CoV-2/genética
2.
Nat Chem Biol ; 18(9): 942-953, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35697798

RESUMEN

Regenerating pancreatic ß-cells is a potential curative approach for diabetes. We previously identified the small molecule CID661578 as a potent inducer of ß-cell regeneration, but its target and mechanism of action have remained unknown. We now screened 257 million yeast clones and determined that CID661578 targets MAP kinase-interacting serine/threonine kinase 2 (MNK2), an interaction we genetically validated in vivo. CID661578 increased ß-cell neogenesis from ductal cells in zebrafish, neonatal pig islet aggregates and human pancreatic ductal organoids. Mechanistically, we found that CID661578 boosts protein synthesis and regeneration by blocking MNK2 from binding eIF4G in the translation initiation complex at the mRNA cap. Unexpectedly, this blocking activity augmented eIF4E phosphorylation depending on MNK1 and bolstered the interaction between eIF4E and eIF4G, which is necessary for both hypertranslation and ß-cell regeneration. Taken together, our findings demonstrate a targetable role of MNK2-controlled translation in ß-cell regeneration, a role that warrants further investigation in diabetes.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación , Animales , Línea Celular , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Humanos , Recién Nacido , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Pez Cebra/metabolismo
3.
Nat Commun ; 12(1): 3362, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099692

RESUMEN

Diabetes can be caused by an insufficiency in ß-cell mass. Here, we performed a genetic screen in a zebrafish model of ß-cell loss to identify pathways promoting ß-cell regeneration. We found that both folate receptor 1 (folr1) overexpression and treatment with folinic acid, stimulated ß-cell differentiation in zebrafish. Treatment with folinic acid also stimulated ß-cell differentiation in cultures of neonatal pig islets, showing that the effect could be translated to a mammalian system. In both zebrafish and neonatal pig islets, the increased ß-cell differentiation originated from ductal cells. Mechanistically, comparative metabolomic analysis of zebrafish with/without ß-cell ablation and with/without folinic acid treatment indicated ß-cell regeneration could be attributed to changes in the pyrimidine, carnitine, and serine pathways. Overall, our results suggest evolutionarily conserved and previously unknown roles for folic acid and one-carbon metabolism in the generation of ß-cells.


Asunto(s)
Carbono/metabolismo , Diferenciación Celular/efectos de los fármacos , Receptor 1 de Folato/metabolismo , Células Secretoras de Insulina/metabolismo , Leucovorina/farmacología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Carnitina/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Receptor 1 de Folato/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Secretoras de Insulina/citología , Larva/genética , Larva/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Pirimidinas/metabolismo , Porcinos , Pez Cebra/genética
4.
Curr Protoc Cell Biol ; 83(1): e82, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30548444

RESUMEN

Traditionally, studies of cells and tissues have been performed on isolated primary cells or immortalized cell lines by culturing them in 2D culture dishes or flasks. However, a caveat regarding 2D culture is that the cells poorly recapitulate their in vivo counterparts, mainly due to a lack of 3D cell-cell and cell-extracellular matrix interactions. In recent years, the development of in vitro organoids as 3D culture has gained substantial attention as a model to study different tissues. In adults, pancreatic ductal cells are considered as a source of stem or progenitor cells, so developing new methods to study ductal cells would be useful. Here, we provide a protocol to isolate mouse pancreatic ductal cells and a cost-effective protocol to generate 3D organoid structures from such ductal cells. Additionally, we have devised a protocol for immunostaining of intact whole organoids without sectioning. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Organoides/citología , Conductos Pancreáticos/citología , Técnicas de Cultivo de Tejidos , Animales , Ratones , Ratones Endogámicos C57BL
5.
Diabetes ; 67(7): 1322-1331, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29625991

RESUMEN

Previously, we showed that thyroid hormone (TH) triiodothyronine (T3) enhanced ß-cell functional maturation through induction of Mafa High levels of T3 have been linked to decreased life span in mammals and low levels to lengthened life span, suggesting a relationship between TH and aging. Here, we show that T3 increased p16Ink4a (a ß-cell senescence marker and effector) mRNA in rodent and human ß-cells. The kinetics of Mafa and p16Ink4a induction suggested both genes as targets of TH via TH receptors (THRs) binding to specific response elements. Using specific agonists CO23 and GC1, we showed that p16Ink4a expression was controlled by THRA and Mafa by THRB. Using chromatin immunoprecipitation and a transient transfection yielding biotinylated THRB1 or THRA isoforms to achieve specificity, we determined that THRA isoform bound to p16Ink4a , whereas THRB1 bound to Mafa but not to p16Ink4a On a cellular level, T3 treatment accelerated cell senescence as shown by increased number of ß-cells with acidic ß-galactosidase activity. Our data show that T3 can simultaneously induce both maturation (Mafa) and aging (p16Ink4a ) effectors and that these dichotomous effects are mediated through different THR isoforms. These findings may be important for further improving stem cell differentiation protocols to produce functional ß-cells for replacement therapies in diabetes.


Asunto(s)
Biomarcadores/metabolismo , Diferenciación Celular , Senescencia Celular , Células Secretoras de Insulina/efectos de los fármacos , Triyodotironina/farmacología , Animales , Biomarcadores/análisis , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Humanos , Células Secretoras de Insulina/fisiología , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
6.
Stem Cell Reports ; 10(3): 725-738, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29478894

RESUMEN

Pancreatic duct epithelial cells have been suggested as a source of progenitors for pancreatic growth and regeneration. However, genetic lineage-tracing experiments with pancreatic duct-specific Cre expression have given conflicting results. Using immunofluorescence and flow cytometry, we show heterogeneous expression of both HNF1ß and SOX9 in adult human and murine ductal epithelium. Their expression was dynamic and diminished significantly after induced replication. Purified pancreatic duct cells formed organoid structures in 3D culture, and heterogeneity of expression of Hnf1ß and Sox9 was maintained even after passaging. Using antibodies against a second cell surface molecule CD51 (human) or CD24 (mouse), we could isolate living subpopulations of duct cells enriched for high or low expression of HNF1ß and SOX9. Only the CD24high (Hnfßhigh/Sox9high) subpopulation was able to form organoids.


Asunto(s)
Factor Nuclear 1-beta del Hepatocito/metabolismo , Conductos Pancreáticos/metabolismo , Factor de Transcripción SOX9/metabolismo , Adulto , Anciano , Animales , Antígeno CD24/metabolismo , Células Epiteliales/metabolismo , Humanos , Integrina alfaV/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Organoides/metabolismo
7.
Cell Tissue Res ; 356(1): 65-75, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24562376

RESUMEN

The neural retina is subjected to various degenerative conditions. Regenerative stem-cell-based therapy holds great promise for treating severe retinal degeneration diseases, although many drawbacks remain to be overcome. One important problem is to gain authentically differentiated cells for replacement. Paired box 6 protein (5a) (PAX6 (5a)) is a highly conserved master control gene that has an essential role in the development of the vertebrate visual system. Human adipose-tissue-derived stem cell (hADSC) isolation was performed by using fat tissues and was confirmed by the differentiation potential of the cells into adipocytes and osteocytes and by their surface marker profile. The coding region of the human PAX6 (5a) gene isoform was cloned and lentiviral particles were propagated in HEK293T. The differentiation of hADSCs into retinal cells was characterized by morphological characteristics, quantitative real-time reverse transcription plus the polymerase chain reaction (qPCR) and immunocytochemistry (ICC) for some retinal cell-specific and retinal pigmented epithelial (RPE) cell-specific markers. hADSCs were successfully isolated. Flow cytometric analysis of surface markers indicated the high purity (~97 %) of isolated hADSCs. After 30 h of post-transduction, cells gradually showed the characteristic morphology of neuronal cells and small axon-like processes emerged. qPCR and ICC confirmed the differentiation of some neural retinal cells and RPE cells. Thus, PAX6 (5a) transcription factor expression, together with medium supplemented with fibronectin, is able to induce the differentiation of hADSCs into retinal progenitors, RPE cells and photoreceptors.


Asunto(s)
Tejido Adiposo/citología , Diferenciación Celular , Proteínas del Ojo/genética , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Neuronas Retinianas/citología , Adulto , Biomarcadores/metabolismo , Diferenciación Celular/genética , Linaje de la Célula , Proliferación Celular , Separación Celular , Forma de la Célula , Células Cultivadas , Proteínas del Ojo/metabolismo , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Proteínas de Homeodominio/metabolismo , Humanos , Cinética , Lentivirus/genética , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Neuronas Retinianas/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Transducción Genética , Adulto Joven
8.
Cell Reprogram ; 14(6): 459-70, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23035654

RESUMEN

Pluripotent stem cells (PSCs) have the potential to differentiate into many cell types and therefore can be a valuable source for cell therapy. Embryonic stem cells (ESCs), which are derived from the inner cell mass (ICM) of the blastocyst, are representative of PSCs. However, use of these cells has some limitations, especially ethical restrictions and immune response. As a result, researchers have been looking for other cell sources or strategies to overcome these limitations. One kind of cellular reprogramming is the process of guiding mature cells into a state of gene expression similar to PSCs. It has been demonstrated that somatic cells can be reprogrammed by various methods, including somatic cell nuclear transfer (SCNT) and cell fusion with ESCs or treatment with their extracts. This implies that some factors in oocytes and ESCs are able to initiate the reprogramming process. Accordingly, induced pluripotent stem cells (iPSCs) have been derived from somatic cells by ectopic expression of some transcription factors. This discovery has resulted in raising several important questions about the mechanisms by which these factors influence the reprogramming and epigenetic status of the cells. iPSCs hold great promise for regenerative medicine, developmental biology, and drug discovery because they circumvent problems associated with both ethical issues and immunological rejection. Here we review the experiments involved in the discovery of iPSCs, important factors in their reprogramming, and their future perspectives in cell therapy.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Animales , Fusión Celular/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/tendencias , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/trasplante , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Técnicas de Transferencia Nuclear , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...