Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Energy Environ Sci ; 15(7): 2958-2973, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35923416

RESUMEN

Non-fullerene acceptors (NFAs) are excellent light harvesters, yet the origin of their high optical extinction is not well understood. In this work, we investigate the absorption strength of NFAs by building a database of time-dependent density functional theory (TDDFT) calculations of ∼500 π-conjugated molecules. The calculations are first validated by comparison with experimental measurements in solution and solid state using common fullerene and non-fullerene acceptors. We find that the molar extinction coefficient (ε d,max) shows reasonable agreement between calculation in vacuum and experiment for molecules in solution, highlighting the effectiveness of TDDFT for predicting optical properties of organic π-conjugated molecules. We then perform a statistical analysis based on molecular descriptors to identify which features are important in defining the absorption strength. This allows us to identify structural features that are correlated with high absorption strength in NFAs and could be used to guide molecular design: highly absorbing NFAs should possess a planar, linear, and fully conjugated molecular backbone with highly polarisable heteroatoms. We then exploit a random decision forest algorithm to draw predictions for ε d,max using a computational framework based on extended tight-binding Hamiltonians, which shows reasonable predicting accuracy with lower computational cost than TDDFT. This work provides a general understanding of the relationship between molecular structure and absorption strength in π-conjugated organic molecules, including NFAs, while introducing predictive machine-learning models of low computational cost.

2.
Nat Commun ; 12(1): 3642, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131145

RESUMEN

Spectroscopic measurements of charge transfer (CT) states provide valuable insight into the voltage losses in organic photovoltaics (OPVs). Correct interpretation of CT-state spectra depends on knowledge of the underlying broadening mechanisms, and the relative importance of molecular vibrational broadening and variations in the CT-state energy (static disorder). Here, we present a physical model, that obeys the principle of detailed balance between photon absorption and emission, of the impact of CT-state static disorder on voltage losses in OPVs. We demonstrate that neglect of CT-state disorder in the analysis of spectra may lead to incorrect estimation of voltage losses in OPV devices. We show, using measurements of polymer:non-fullerene blends of different composition, how our model can be used to infer variations in CT-state energy distribution that result from variations in film microstructure. This work highlights the potential impact of static disorder on the characteristics of disordered organic blend devices.

3.
Adv Energy Mater ; 10(8)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33071704

RESUMEN

The temperature dependent aggregation behavior of PffBT4T polymers used in organic solar cells plays a critical role in the formation of a favorable morphology in fullerene-based devices. However, there has been little investigation into the impact of donor/acceptor ratio on morphology tuning, especially for non-fullerene acceptors (NFAs). Herein, the influence of composition on morphology is reported for blends of PffBT4T-2DT with two NFAs, O-IDTBR and O-IDFBR. The monotectic phase behavior inferred from differential scanning calorimetry provides qualitative insight into the interplay between solid-liquid and liquid-liquid demixing. Transient absorption spectroscopy suggests that geminate recombination dominates charge decay and that the decay rate is insensitive to composition, corroborated by negligible changes in open-circuit voltage. Exciton lifetimes are also insensitive to composition, which is attributed to the signal being dominated by acceptor excitons which are formed and decay in domains of similar size and purity irrespective of composition. A hierarchical morphology is observed, where the composition dependence of size scales and scattering intensity from resonant soft X-ray scattering (R-SoXS) is dominated by variations in volume fractions of polymer/polymer rich domains. Results suggest an optimal morphology where polymer crystallite size and connectivity are balanced, ensuring a high probability of hole extraction via such domains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...