Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 90(13): 6097-6111, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27122575

RESUMEN

UNLABELLED: Phosphatidylserine (PtdSer) receptors that are responsible for the clearance of dying cells have recently been found to mediate enveloped virus entry. Ebola virus (EBOV), a member of the Filoviridae family of viruses, utilizes PtdSer receptors for entry into target cells. The PtdSer receptors human and murine T-cell immunoglobulin mucin (TIM) domain proteins TIM-1 and TIM-4 mediate filovirus entry by binding to PtdSer on the virion surface via a conserved PtdSer binding pocket within the amino-terminal IgV domain. While the residues within the TIM-1 IgV domain that are important for EBOV entry are characterized, the molecular details of virion-TIM-4 interactions have yet to be investigated. As sequences and structural alignments of the TIM proteins suggest distinct differences in the TIM-1 and TIM-4 IgV domain structures, we sought to characterize TIM-4 IgV domain residues required for EBOV entry. Using vesicular stomatitis virus pseudovirions bearing EBOV glycoprotein (EBOV GP/VSVΔG), we evaluated virus binding and entry into cells expressing TIM-4 molecules mutated within the IgV domain, allowing us to identify residues important for entry. Similar to TIM-1, residues in the PtdSer binding pocket of murine and human TIM-4 (mTIM-4 and hTIM-4) were found to be important for EBOV entry. However, additional TIM-4-specific residues were also found to impact EBOV entry, with a total of 8 mTIM-4 and 14 hTIM-4 IgV domain residues being critical for virion binding and internalization. Together, these findings provide a greater understanding of the interaction of TIM-4 with EBOV virions. IMPORTANCE: With more than 28,000 cases and over 11,000 deaths during the largest and most recent Ebola virus (EBOV) outbreak, there has been increased emphasis on the development of therapeutics against filoviruses. Many therapies under investigation target EBOV cell entry. T-cell immunoglobulin mucin (TIM) domain proteins are cell surface factors important for the entry of many enveloped viruses, including EBOV. TIM family member TIM-4 is expressed on macrophages and dendritic cells, which are early cellular targets during EBOV infection. Here, we performed a mutagenesis screening of the IgV domain of murine and human TIM-4 to identify residues that are critical for EBOV entry. Surprisingly, we identified more human than murine TIM-4 IgV domain residues that are required for EBOV entry. Defining the TIM IgV residues needed for EBOV entry clarifies the virus-receptor interactions and paves the way for the development of novel therapeutics targeting virus binding to this cell surface receptor.


Asunto(s)
Ebolavirus/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Internalización del Virus , Animales , Línea Celular , Ebolavirus/genética , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones , Modelos Moleculares , Mutagénesis , Receptores de Superficie Celular/genética , Receptores Virales/genética , Receptores Virales/metabolismo , Acoplamiento Viral
2.
PLoS Pathog ; 11(11): e1005263, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26562011

RESUMEN

Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.


Asunto(s)
Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Interferón gamma/farmacología , Macrófagos/efectos de los fármacos , Animales , Células Cultivadas , Humanos , Macrófagos/metabolismo , Ratones Endogámicos BALB C , ARN Viral/genética , Replicación Viral/efectos de los fármacos
3.
Curr Clin Microbiol Rep ; 2(3): 115-124, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26509109

RESUMEN

Filoviruses cause severe hemorrhagic fever in humans. The archetypal virus of this group, Ebola virus, is responsible for the current filovirus epidemic in West Africa. Filoviruses infect most mammalian cells, resulting in broad species tropism and likely contributing to rapid spread of virus throughout the body. A thorough understanding of filovirus entry events will facilitate the development of therapeutics against these critical steps in the viral life cycle. This review summarizes the current understanding of filovirus entry and discusses some of the recent advancements in therapeutic strategies that target entry.

4.
mBio ; 5(1): e00862-13, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24473128

RESUMEN

UNLABELLED: Ebola virus (EBOV) entry requires the virion surface-associated glycoprotein (GP) that is composed of a trimer of heterodimers (GP1/GP2). The GP1 subunit contains two heavily glycosylated domains, the glycan cap and the mucin-like domain (MLD). The glycan cap contains only N-linked glycans, whereas the MLD contains both N- and O-linked glycans. Site-directed mutagenesis was performed on EBOV GP1 to systematically disrupt N-linked glycan sites to gain an understanding of their role in GP structure and function. All 15 N-glycosylation sites of EBOV GP1 could be removed without compromising the expression of GP. The loss of these 15 glycosylation sites significantly enhanced pseudovirion transduction in Vero cells, which correlated with an increase in protease sensitivity. Interestingly, exposing the receptor-binding domain (RBD) by removing the glycan shield did not allow interaction with the endosomal receptor, NPC1, indicating that the glycan cap/MLD domains mask RBD residues required for binding. The effects of the loss of GP1 N-linked glycans on Ca(2+)-dependent (C-type) lectin (CLEC)-dependent transduction were complex, and the effect was unique for each of the CLECs tested. Surprisingly, EBOV entry into murine peritoneal macrophages was independent of GP1 N-glycans, suggesting that CLEC-GP1 N-glycan interactions are not required for entry into this important primary cell. Finally, the removal of all GP1 N-glycans outside the MLD enhanced antiserum and antibody sensitivity. In total, our results provide evidence that the conserved N-linked glycans on the EBOV GP1 core protect GP from antibody neutralization despite the negative impact the glycans have on viral entry efficiency. IMPORTANCE: Filovirus outbreaks occur sporadically throughout central Africa, causing high fatality rates among the general public and health care workers. These unpredictable hemorrhagic fever outbreaks are caused by multiple species of Ebola viruses, as well as Marburg virus. While filovirus vaccines and therapeutics are being developed, there are no licensed products. The sole viral envelope glycoprotein, which is a principal immunogenic target, contains a heavy shield of glycans surrounding the conserved receptor-binding domain. We find that disruption of this shield through targeted mutagenesis leads to an increase in cell entry, protease sensitivity, and antiserum/antibody sensitivity but is not sufficient to allow virion binding to the intracellular receptor NPC1. Therefore, our studies provide evidence that filoviruses maintain glycoprotein glycosylation to protect against proteases and antibody neutralization at the expense of efficient entry. Our results unveil interesting insights into the unique entry process of filoviruses and potential immune evasion tactics of the virus.


Asunto(s)
Ebolavirus/química , Ebolavirus/fisiología , Polisacáridos/análisis , Polisacáridos/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Animales , Chlorocebus aethiops , Análisis Mutacional de ADN , Ebolavirus/genética , Macrófagos , Ratones , Mutagénesis Sitio-Dirigida , Polisacáridos/genética , Transducción Genética , Células Vero , Proteínas del Envoltorio Viral/genética
5.
Am J Respir Cell Mol Biol ; 45(4): 874-81, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21441383

RESUMEN

Recent reports postulate that the dual oxidase (DUOX) proteins function as part of a multicomponent oxidative pathway used by the respiratory mucosa to kill bacteria. The other components include epithelial ion transporters, which mediate the secretion of the oxidizable anion thiocyanate (SCN(-)) into airway surface liquid, and lactoperoxidase (LPO), which catalyzes the H(2)O(2)-dependent oxidation of the pseudohalide SCN(-) to yield the antimicrobial molecule hypothiocyanite (OSCN(-)). We hypothesized that this oxidative host defense system is also active against respiratory viruses. We evaluated the activity of oxidized LPO substrates against encapsidated and enveloped viruses. When tested for antiviral properties, the LPO-dependent production of OSCN(-) did not inactivate adenovirus or respiratory syncytial virus (RSV). However, substituting SCN(-) with the alternative LPO substrate iodide (I(-)) resulted in a marked reduction of both adenovirus transduction and RSV titer. Importantly, well-differentiated primary airway epithelia generated sufficient H(2)O(2) to inactivate adenovirus or RSV when LPO and I(-) were supplied. The administration of a single dose of 130 mg of oral potassium iodide to human subjects increased serum I(-) concentrations, and resulted in the accumulation of I(-) in upper airway secretions. These results suggest that the LPO/I(-)/H(2)O(2) system can contribute to airway antiviral defenses. Furthermore, the delivery of I(-) to the airway mucosa may augment innate antiviral immunity.


Asunto(s)
Adenoviridae/efectos de los fármacos , Antivirales/farmacología , Inmunidad Mucosa/efectos de los fármacos , Yoduro de Potasio/farmacología , Mucosa Respiratoria/efectos de los fármacos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Yoduro de Sodio/farmacología , Adenoviridae/inmunología , Adenoviridae/patogenicidad , Animales , Antivirales/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Compuestos de Yodo/metabolismo , Lactoperoxidasa/metabolismo , Oxidación-Reducción , Yoduro de Potasio/metabolismo , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología , Virus Sincitiales Respiratorios/efectos de los fármacos , Virus Sincitiales Respiratorios/inmunología , Virus Sincitiales Respiratorios/patogenicidad , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología , Yoduro de Sodio/metabolismo , Porcinos , Tiocianatos/metabolismo , Factores de Tiempo , Activación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...