Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 47(2): 557-573, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37916653

RESUMEN

Multiple Arabidopsis H+ /Cation exchangers (CAXs) participate in high-capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1-4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast-localised H+ /Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP-MS) and synchrotron X-ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP-MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild-type plants grown in Ca-limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+ /Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Calcio/metabolismo , Antiportadores/genética , Antiportadores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cationes/metabolismo , Plantas/metabolismo
2.
Microrna ; 12(3): 165-170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37005545

RESUMEN

The specific foods to eat for optimal nutrition remain ill-defined. Studies using plantbased diets or milk suggest that vesicles, termed exosomes, and small RNAs termed microRNAs (miRNAs) are health promoting components in foods. However, numerous studies refute the potential of dietary cross-kingdom communication of exosomes and miRNAs. While research reinforces that plant-based diets and milk are healthy components of a well-rounded diet, the bioavailability and bioactivity of the exosomes and miRNAs present in plant-based diets and milk remain unclear. Further investigations of plant-based diet and milk exosome like particles may open a new era in application of food for overall health enhancement. In addition, the potential biotechnological plantbased diet and milk exosome like particles can aid in cancer treatment.


Asunto(s)
Exosomas , MicroARNs , Animales , MicroARNs/genética , Exosomas/genética , Leche , Dieta , Plantas
3.
PLoS One ; 18(2): e0281805, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36795673

RESUMEN

In perennial plants such as pecan, once reproductive maturity is attained, there are genetic switches that are regulated and required for flower development year after year. Pecan trees are heterodichogamous with both pistillate and staminate flowers produced on the same tree. Therefore, defining genes exclusively responsible for pistillate inflorescence and staminate inflorescence (catkin) initiation is challenging at best. To understand these genetic switches and their timing, this study analyzed catkin bloom and gene expression of lateral buds collected from a protogynous (Wichita) and a protandrous (Western) pecan cultivar in summer, autumn and spring. Our data showed that pistillate flowers in the current season on the same shoot negatively impacted catkin production on the protogynous 'Wichita' cultivar. Whereas fruit production the previous year on 'Wichita' had a positive effect on catkin production on the same shoot the following year. However, fruiting the previous year nor current year pistillate flower production had no significant effect on catkin production on 'Western' (protandrous cultivar) cultivar. The RNA-Seq results present more significant differences between the fruiting and non-fruiting shoots of the 'Wichita' cultivar compared to the 'Western' cultivar, revealing the genetic signals likely responsible for catkin production. Our data presented here, indicates the genes showing expression for the initiation of both types of flowers the season before bloom.


Asunto(s)
Carya , Carya/genética , Cono de Planta , Flores/genética , Frutas , Perfilación de la Expresión Génica
4.
Bio Protoc ; 13(3): e4603, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36816988

RESUMEN

Based on the availability of oxygen, plant growth environment can be normoxic (normal environment), hypoxic (reduced oxygen, <21%), or anoxic (complete depletion of oxygen). Hypoxic/anoxic environment is created when a plant is exposed to stresses such as submergence, flooding, or pathogen attack. Survival of the plants following stress conditions is in part dependent on their ability to overcome the stress induced by anoxia/hypoxia conditions. This shows the need for the development of strategies for understanding the mechanisms involved in plant tolerance to anoxia. Previous studies have employed different methods for establishing an anerobic environment. Here, we describe a simple method for creating anoxic environment using an anaerobic atmosphere generation bag. Anoxic conditions can be maintained in a cylindrical jar, a rectangular box, or a vacuum sealer bag, enabling the screening of a large number of samples. This protocol is particularly useful to screen plant mutants that are tolerant to anoxia. The method is simple, easy, cost-efficient, reproducible, and does not require any sophisticated instruments. Graphic abstract.

5.
Plant Physiol ; 190(4): 2617-2636, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35972350

RESUMEN

A plant's oxygen supply can vary from normal (normoxia) to total depletion (anoxia). Tolerance to anoxia is relevant to wetland species, rice (Oryza sativa) cultivation, and submergence tolerance of crops. Decoding and transmitting calcium (Ca) signals may be an important component to anoxia tolerance; however, the contribution of intracellular Ca transporters to this process is poorly understood. Four functional cation/proton exchangers (CAX1-4) in Arabidopsis (Arabidopsis thaliana) help regulate Ca homeostasis around the vacuole. Our results demonstrate that cax1 mutants are more tolerant to both anoxic conditions and submergence. Using phenotypic measurements, RNA-sequencing, and proteomic approaches, we identified cax1-mediated anoxia changes that phenocopy changes present in anoxia-tolerant crops: altered metabolic processes, diminished reactive oxygen species production post anoxia, and altered hormone signaling. Comparing wild-type and cax1 expressing genetically encoded Ca indicators demonstrated altered cytosolic Ca signals in cax1 during reoxygenation. Anoxia-induced Ca signals around the plant vacuole are involved in the control of numerous signaling events related to adaptation to low oxygen stress. This work suggests that cax1 anoxia response pathway could be engineered to circumvent the adverse effects of flooding that impair production agriculture.


Asunto(s)
Arabidopsis , Proteínas de Transporte de Catión , Humanos , Vacuolas/metabolismo , Calcio/metabolismo , Antiportadores/metabolismo , Protones , Proteómica , Proteínas de Transporte de Catión/metabolismo , Arabidopsis/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Oxígeno/metabolismo
6.
Nat Commun ; 12(1): 4125, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34226565

RESUMEN

Genome-enabled biotechnologies have the potential to accelerate breeding efforts in long-lived perennial crop species. Despite the transformative potential of molecular tools in pecan and other outcrossing tree species, highly heterozygous genomes, significant presence-absence gene content variation, and histories of interspecific hybridization have constrained breeding efforts. To overcome these challenges, here, we present diploid genome assemblies and annotations of four outbred pecan genotypes, including a PacBio HiFi chromosome-scale assembly of both haplotypes of the 'Pawnee' cultivar. Comparative analysis and pan-genome integration reveal substantial and likely adaptive interspecific genomic introgressions, including an over-retained haplotype introgressed from bitternut hickory into pecan breeding pedigrees. Further, by leveraging our pan-genome presence-absence and functional annotation database among genomes and within the two outbred haplotypes of the 'Lakota' genome, we identify candidate genes for pest and pathogen resistance. Combined, these analyses and resources highlight significant progress towards functional and quantitative genomics in highly diverse and outbred crops.


Asunto(s)
Carya/genética , Cromosomas , Genoma de Planta , Genómica , Fitomejoramiento , Diploidia , Resistencia a la Enfermedad/genética , Variación Genética , Genotipo , Haplotipos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...