Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cells ; 42(4): 301-312, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31091556

RESUMEN

Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5 ) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB ) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.


Asunto(s)
Relojes Circadianos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Mutación , Degradación de ARNm Mediada por Codón sin Sentido , Transactivadores/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas CLOCK/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Procesamiento Postranscripcional del ARN , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 115(27): 7129-7134, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29915051

RESUMEN

Sleep and metabolism are physiologically and behaviorally intertwined; however, the molecular basis for their interaction remains poorly understood. Here, we identified a serine metabolic pathway as a key mediator for starvation-induced sleep suppression. Transcriptome analyses revealed that enzymes involved in serine biosynthesis were induced upon starvation in Drosophila melanogaster brains. Genetic mutants of astray (aay), a fly homolog of the rate-limiting phosphoserine phosphatase in serine biosynthesis, displayed reduced starvation-induced sleep suppression. In contrast, a hypomorphic mutation in a serine/threonine-metabolizing enzyme, serine/threonine dehydratase (stdh), exaggerated starvation-induced sleep suppression. Analyses of double mutants indicated that aay and stdh act on the same genetic pathway to titrate serine levels in the head as well as to adjust starvation-induced sleep behaviors. RNA interference-mediated depletion of aay expression in neurons, using cholinergic Gal4 drivers, phenocopied aay mutants, while a nicotinic acetylcholine receptor antagonist selectively rescued the exaggerated starvation-induced sleep suppression in stdh mutants. Taken together, these data demonstrate that neural serine metabolism controls sleep during starvation, possibly via cholinergic signaling. We propose that animals have evolved a sleep-regulatory mechanism that reprograms amino acid metabolism for adaptive sleep behaviors in response to metabolic needs.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , L-Serina Deshidratasa/metabolismo , Mutación , Serina/metabolismo , Transducción de Señal , Inanición/metabolismo , Animales , Conducta Animal , Proteínas de Drosophila/genética , Drosophila melanogaster , L-Serina Deshidratasa/genética , Serina/genética , Inanición/genética
3.
Neuroscientist ; 21(5): 503-18, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25782890

RESUMEN

Circadian clocks are endogenous time-keeping mechanisms to adaptively coordinate animal behaviors and physiology with daily environmental changes. So far many circadian studies in model organisms have identified evolutionarily conserved molecular frames of circadian clock genes in the context of transcription-translation feedback loops. The molecular clockwork drives cell-autonomously cycling gene expression with ~24-hour periodicity, which is fundamental to circadian rhythms. Light and temperature are two of the most potent external time cues to reset the circadian phase of the internal clocks, yet relatively little is known about temperature-relevant clock regulation. In this review, we describe recent findings on temperature-dependent clock mechanisms in homeothermic mammals as compared with poikilothermic Drosophila at molecular, neural, and organismal levels. We propose thermodynamic transitions in RNA secondary structures might have been potent substrates for the molecular evolution of temperature-relevant post-transcriptional mechanisms. Future works should thus validate the potential involvement of specific post-transcriptional steps in temperature-dependent plasticity of circadian clocks.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Ambiente , Expresión Génica/fisiología , Temperatura , Animales , Humanos , Mamíferos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...