Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Biol Eng ; 38(2): 197-210, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29861706

RESUMEN

The objective of this study was to improve the biomechanical performance of titanium (Ti) using a biocompatible electrospun nanofiber matrix. The study is based on the hypothesis that coating a Ti surface with a nanofiber matrix (NFM) made of collagen (CG) and polycaprolactone (PCL) electrospun nanofibers could increase the mechanical fixation of Ti/bone by improving the surface and cytocompatibility properties of Ti. This study prepared Ti samples with and without CG-PCL NFM coatings. This study determined the in vitro effects of each group of Ti samples on the surface topography and cytocompatibility (osteoblast cell adhesion, proliferation, mineralization and protein adsorption) properties. This study also determined in vivo interface shear strength and bone volume fraction of each group of Ti samples with bone using a rabbit model. This study found that the CG-PCL NFM coating on Ti improved the surface roughness, osteoblast cell adhesion, proliferation, mineralization and protein adsorption properties of Ti. In vivo studies found that interface shear strength of CG-PCL NFM-coated Ti/bone samples was significantly higher compared to those values of control Ti/bone samples (p value < 0.05) due to an increase in the amount of growth of the connective tissue joining the Ti implant. Therefore, the developed CG-PCL NFM coating technique should further be investigated for its potential in clinical applications.

2.
Nanomaterials (Basel) ; 7(7)2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28698500

RESUMEN

Poly(methyl methacrylate) (PMMA) bone cement has limited biocompatibility. Polycaprolactone (PCL) electrospun nanofiber (ENF) has many applications in the biomedical field due to its excellent biocompatibility and degradability. The effect of coating PCL ENF on the surface topography, biocompatibility, and mechanical strength of PMMA bone cement is not currently known. This study is based on the hypothesis that the PCL ENF coating on PMMA will increase PMMA roughness leading to increased biocompatibility without influencing its mechanical properties. This study prepared PMMA samples without and with the PCL ENF coating, which were named the control and ENF coated samples. This study determined the effects on the surface topography and cytocompatibility (osteoblast cell adhesion, proliferation, mineralization, and protein adsorption) properties of each group of PMMA samples. This study also determined the bending properties (strength, modulus, and maximum deflection at fracture) of each group of PMMA samples from an American Society of Testing Metal (ASTM) standard three-point bend test. This study found that the ENF coating on PMMA significantly improved the surface roughness and cytocompatibility properties of PMMA (p < 0.05). This study also found that the bending properties of ENF-coated PMMA samples were not significantly different when compared to those values of the control PMMA samples (p > 0.05). Therefore, the PCL ENF coating technique should be further investigated for its potential in clinical applications.

3.
Nanomaterials (Basel) ; 7(6)2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28608839

RESUMEN

The effect of depositing a collagen (CG)-poly-ε-caprolactone (PCL) nanofiber mesh (NFM) at the microgrooves of titanium (Ti) on the mechanical stability and osseointegration of the implant with bone was investigated using a rabbit model. Three groups of Ti samples were produced: control Ti samples where there were no microgrooves or CG-PCL NFM, groove Ti samples where microgrooves were machined on the circumference of Ti, and groove-NFM Ti samples where CG-PCL NFM was deposited on the machined microgrooves. Each group of Ti samples was implanted in the rabbit femurs for eight weeks. The mechanical stability of the Ti/bone samples were quantified by shear strength from a pullout tension test. Implant osseointegration was evaluated by a histomorphometric analysis of the percentage of bone and connective tissue contact with the implant surface. The bone density around the Ti was measured by micro-computed tomography (µCT) analysis. This study found that the shear strength of groove-NFM Ti/bone samples was significantly higher compared to control and groove Ti/bone samples (p < 0.05) and NFM coating influenced the bone density around Ti samples. In vivo histomorphometric analyses show that bone growth into the Ti surface increased by filling the microgrooves with CG-PCL NFM. The study concludes that a microgroove assisted CG-PCL NFM coating may benefit orthopedic implants.

4.
Biomed Mater Eng ; 27(5): 461-474, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27885994

RESUMEN

Titanium (Ti) alloys have been widely used in orthopedics and orthodontic surgeries as implants because of their beneficial chemical, mechanical, and biological properties. Improvement of these properties of a Ti alloy, Ti-6Al-4V Eli, is possible by the use of plasma nitriding treatment on the Ti alloy. The novelty of this study is the evaluation of a DC glow discharge nitrogen plasma treatment method on the surface, mechanical and biological properties of Ti alloy. Specifically, this study measured the chemical states, roughness, hardness, and biocompatibility of plasma nitride treated Ti-6Al-4V Eli as well as determined the effect of plasma treatment on the fracture strength between the Ti alloy and bone clement. This study hypothesized that DC glow discharge nitrogen plasma treatment may alter the surface chemical and mechanical states of the Ti alloy that may influence the fracture strength of implant/cement interfaces under static load. This study found that plasma nitride treatment on Ti alloy does not have effect on the roughness and biocompatibility (P value > 0.5), but significantly effect on the hardness and fracture strength of Ti-bone cement interfaces compared to those values of untreated Ti samples (P value < 0.5). Therefore, the DC glow discharge nitrogen plasma treated Ti alloy can potentially be used for orthopedic applications.


Asunto(s)
Materiales Biocompatibles/química , Cementos para Huesos/química , Aleaciones Dentales/química , Gases em Plasma/química , Titanio/química , Animales , Adhesión Celular , Línea Celular , Dureza , Ensayo de Materiales , Ratones , Osteoblastos/citología , Propiedades de Superficie , Resistencia a la Tracción
5.
Int J Nanomedicine ; 11: 585-94, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26893563

RESUMEN

Implant failure due to poor integration of the implant with the surrounding biomaterial is a common problem in various orthopedic and orthodontic surgeries. Implant fixation mostly depends upon the implant surface topography. Micron to nanosize circular-shaped groove architecture with adequate surface roughness can enhance the mechanical interlock and osseointegration of an implant with the host tissue and solve its poor fixation problem. Such groove architecture can be created on a titanium (Ti) alloy implant by laser peening treatment. Laser peening produces deep, residual compressive stresses in the surfaces of metal parts, delivering increased fatigue life and damage tolerance. The scientific novelty of this study is the controlled deposition of circular-shaped rough spot groove using laser peening technique and understanding the effect of the treatment techniques for improving the implant surface properties. The hypothesis of this study was that implant surface grooves created by controlled laser peen treatment can improve the mechanical and biological responses of the implant with the adjoining biomaterial. The objective of this study was to measure how the controlled laser-peened groove architecture on Ti influences its osteoblast cell functions and bonding strength with bone cement. This study determined the surface roughness and morphology of the peen-treated Ti. In addition, this study compared the osteoblast cell functions (adhesion, proliferation, and differentiation) between control and peen-treated Ti samples. Finally, this study measured the fracture strength between each kind of Ti samples and bone cement under static loading. This study found that laser peen treatment on Ti significantly changed the surface architecture of the Ti, which led to enhanced osteoblast cell adhesion and differentiation on Ti implants and fracture strength of Ti-bone cement interfaces compared with values of untreated Ti samples. Therefore, the laser peen treatment method has the potential to improve the biomechanical functions of Ti implants.


Asunto(s)
Materiales Biocompatibles/química , Cementos para Huesos/química , Adhesión Celular , Terapia por Láser , Osteoblastos/citología , Prótesis e Implantes , Titanio/química , Aleaciones/farmacología , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Ensayo de Materiales , Ratas , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...