RESUMEN
Cutaneous leishmaniasis (CL) is a neglected disease caused by Leishmania parasites. The oral drug miltefosine is effective, but there is a growing problem of drug resistance, which has led to increasing treatment failure rates and relapse of infections. Photodynamic therapy (PDT) combines a light source and a photoactive drug to promote cell death by oxidative stress. Although PDT is effective against several pathogens, its use against drug-resistant Leishmania parasites remains unexplored. Herein, we investigated the potential of organic light-emitting diodes (OLEDs) as wearable light sources, which would enable at-home use or ambulatory treatment of CL. We also assessed its impact on combating miltefosine resistance in Leishmania amazonensis-induced CL in mice. The in vitro activity of OLEDs combined with 1,9-dimethyl-methylene blue (DMMB) (OLED-PDT) was evaluated against wild-type and miltefosine-resistant L. amazonensis strains in promastigote (EC50 = 0.034 µM for both strains) and amastigote forms (EC50 = 0.052 µM and 0.077 µM, respectively). Cytotoxicity in macrophages and fibroblasts was also evaluated. In vivo, we investigated the potential of OLED-PDT in combination with miltefosine using different protocols. Our results demonstrate that OLED-PDT is effective in killing both strains of L. amazonensis by increasing reactive oxygen species and stimulating nitric oxide production. Moreover, OLED-PDT showed great antileishmanial activity in vivo, allowing the reduction of miltefosine dose by half in infected mice using a light dose of 7.8â¯J/cm2 and 15 µM DMMB concentration. In conclusion, OLED-PDT emerges as a new avenue for at-home care and allows a combination therapy to overcome drug resistance in cutaneous leishmaniasis.
Asunto(s)
Resistencia a Medicamentos , Leishmaniasis Cutánea , Ratones Endogámicos BALB C , Fosforilcolina , Fotoquimioterapia , Animales , Fotoquimioterapia/métodos , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Fosforilcolina/uso terapéutico , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Femenino , Leishmania/efectos de los fármacos , Macrófagos/parasitología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismoRESUMEN
BACKGROUND: This study is a systematic review with meta-analysis comparing radioactive seed localization (RSL) versus radio-guided occult lesion localization (ROLL) and wire-guided localization (WGL) for patients with impalpable breast cancer undergoing breast-conserving surgery and evaluating efficacy, safety, and logistical outcomes. The protocol is registered in PROSPERO with the number CRD42022299726. METHODS: A search was conducted in the Embase, Lilacs, Pubmed, Scielo, Web of Science, and clinicaltrials.gov databases, in addition to a manual search in the reference list of relevant articles, for randomized clinical trials and cohort studies. Studies selected were submitted to their own data extraction forms and risk of bias analysis according to the ROB 2 and ROBINS 1 tools. A meta-analysis was performed, considering the random effect model, calculating the relative risk or the mean difference for dichotomous or continuous data, respectively. The quality of the evidence generated was analyzed by outcome according to the GRADE tool. Overall, 46 articles met the inclusion criteria and were included in this systematic review; of these, 4 studies compared RSL and ROLL with a population of 1550 women, and 43 compared RSL and WGL with a population of 19,820 women. RESULTS: The results showed that RSL is a superior method to WGL in terms of surgical efficiency in the impalpable breast lesions' intraoperative localization, and it is at least equivalent to ROLL. Regarding security, RSL obtained results equivalent to the already established technique, the WGL. In addition to presenting promising results, RSL has been proven to be superior to WGL and ROLL technologies.
RESUMEN
Radiotherapy is a well-established cancer treatment; it is estimated that approximately 52% of oncology patients will require this treatment modality at least once. However, some tumors, such as triple-negative breast cancer (TNBC), may present as radioresistant and thus require high doses of ionizing radiation and a prolonged period of treatment, which may result in more severe side effects. Moreover, such tumors show a high incidence of metastases and decreased survival expectancy of the patient. Thus, new strategies for radiosensitizing TNBC are urgently needed. Red light therapy, photobiomodulation, has been used in clinical practice to mitigate the adverse side effects usually associated with radiotherapy. However, no studies have explored its use as a radiosensitizer of TNBC. Here, we used TNBC-bearing mice as a radioresistant cancer model. Red light treatment was applied in three different protocols before a high dose of radiation (60 Gy split in 4 fractions) was administered. We evaluated tumor growth, mouse clinical signs, total blood cell counts, lung metastasis, survival, and levels of glutathione in the blood. Our data showed that the highest laser dose in combination with radiation arrested tumor progression, likely due to inhibition of GSH synthesis. In addition, red light treatment before each fraction of radiation, regardless of the light dose, improved the health status of the animals, prevented anemia, reduced metastases, and improved survival. Collectively, these results indicate that red light treatment in combination with radiation could prove useful in the treatment of TNBC.
Asunto(s)
Fármacos Sensibilizantes a Radiaciones , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/radioterapia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Modelos Animales de Enfermedad , Línea Celular Tumoral , Fármacos Sensibilizantes a Radiaciones/farmacología , LuzRESUMEN
Radiotherapy is a well-established cancer treatment; it is estimated that approximately 52% of oncology patients will require this treatment modality at least once. However, some tumors, such as triple-negative breast cancer (TNBC), may present as radioresistant and thus require high doses of ionizing radiation and a prolonged period of treatment, which may result in more severe side effects. Moreover, such tumors show a high incidence of metastases and decreased survival expectancy of the patient. Thus, new strategies for radiosensitizing TNBC are urgently needed. Red light therapy, photobiomodulation, has been used in clinical practice to mitigate the adverse side effects usually associated with radiotherapy. However, no studies have explored its use as a radiosensitizer of TNBC. Here, we used TNBC-bearing mice as a radioresistant cancer model. Red light treatment was applied in three different protocols before a high dose of radiation (60 Gy split in 4 fractions) was administered. We evaluated tumor growth, mouse clinical signs, total blood cell counts, lung metastasis, survival, and levels of glutathione in the blood. Our data showed that the highest laser dose in combination with radiation arrested tumor progression, likely due to inhibition of GSH synthesis. In addition, red light treatment before each fraction of radiation, regardless of the light dose, improved the health status of the animals, prevented anemia, reduced metastases, and improved survival. Collectively, these results indicate that red light treatment in combination with radiation could prove useful in the treatment of TNBC.
RESUMEN
The emergence of drug resistance in cutaneous leishmaniasis (CL) has become a major problem over the past decades. The spread of resistant phenotypes has been attributed to the wide misuse of current antileishmanial chemotherapy, which is a serious threat to global health. Photodynamic therapy (PDT) has been shown to be effective against a wide spectrum of drug-resistant pathogens. Due to its multi-target approach and immediate effects, it may be an attractive strategy for treatment of drug-resistant Leishmania species. In this study, we sought to evaluate the activity of PDT in vitro using the photosensitizer 1,9-dimethyl methylene blue (DMMB), against promastigotes of two Leishmania amazonensis strains: the wild-type (WT) and a lab induced miltefosine-resistant (MFR) strain. The underlying mechanisms of DMMB-PDT action upon the parasites was focused on the changes in the lipid metabolism of both strains, which was conducted by a quantitative lipidomics analysis. We also assessed the production of ROS, mitochondrial labeling and lipid droplets accumulation after DMMB-PDT. Our results show that DMMB-PDT produced high levels of ROS, promoting mitochondrial membrane depolarization due to the loss of membrane potential. In addition, both untreated strains revealed some differences in the lipid content, in which MFR parasites showed increased levels of phosphatidylcholine, hence suggesting this could also be related to their mechanism of resistance to miltefosine. Moreover, the oxidative stress and consequent lipid peroxidation led to significant phospholipid alterations, thereby resulting in cellular dysfunction and parasite death. Thus, our results demonstrated that DMMB-mediated PDT is effective to kill L. amazonensis MFR strain and should be further studied as a potential strategy to overcome antileishmanial drug resistance.
Asunto(s)
Leishmania mexicana , Leishmania , Lipidómica , Especies Reactivas de OxígenoRESUMEN
In recent years, Candida auris has emerged as a hazardous hospital-acquired pathogen. Its resistance to antifungal treatments makes it challenging, requiring new approaches to manage it effectively. Herein, we aimed to assess the impact of photodynamic inactivation mediated by methylene blue (MB-PDI) or 1,9-dimethyl MB (DMMB-PDI) combined with a red LED against C. auris. To evaluate the photoinactivation of yeasts, we quantified colony-forming units and monitored ROS production. To gain some insights into the differences between MB and DMMB, we assessed lipid peroxidation (LPO) and mitochondrial membrane potential (ΔΨm). After, we verified the effectiveness of DMMB against biofilms by measuring metabolic activity and biomass, and the structures were analyzed through scanning electron microscopy and optical coherence tomography. We also evaluated the cytotoxicity in mammalian cells. DMMB-PDI successfully eradicated C. auris yeasts at 3 µM regardless of the light dose. In contrast, MB (100 µM) killed cells only when exposed to the highest dose of light. DMMB-PDI promoted higher ROS, LPO and ΔΨm levels than those of MB. Furthermore, DMMB-PDI was able to inhibit biofilm formation and destroy mature biofilms, with no observed toxicity in fibroblasts. We conclude that DMMB-PDI holds great potential to combat the global threat posed by C. auris.
RESUMEN
Melanoma is a serious and aggressive type of skin cancer with growing incidence, and it is the leading cause of death among those affected by this disease. Although surgical resection has been employed as a first-line treatment for the early stages of the tumor, noninvasive topical treatments might represent an alternative option. However, they can be irritating to the skin and result in undesirable side effects. In this context, the potential of topical polymeric hydrogels has been investigated for biomedical applications to overcome current limitations. Due to their biocompatible properties, hydrogels have been considered ideal candidates to improve local therapy and promote wound repair. Moreover, drug combinations incorporated into the polymeric-based matrix have emerged as a promising approach to improve the efficacy of cancer therapy, making them suitable vehicles for drug delivery. In this work, we demonstrate the synthesis and characterization of Pluronic F-127 hydrogels (PL) containing the nitric oxide donor S-nitrosoglutathione (GSNO) and copper oxide nanoparticles (CuO NPs) against melanoma cells. Individually applied NO donor or metallic oxide nanoparticles have been widely explored against various types of cancer with encouraging results. This is the first report to assess the potential and possible underlying mechanisms of action of PL containing both NO donor and CuO NPs toward cancer cells. We found that PL + GSNO + CuO NPs significantly reduced cell viability and greatly increased the levels of reactive oxygen species. In addition, this novel platform had a huge impact on different organelles, thus triggering cell death by inducing nuclear changes, a loss of mitochondrial membrane potential, and lipid peroxidation. Thus, GSNO and CuO NPs incorporated into PL hydrogels might find important applications in the treatment of skin cancer.
RESUMEN
Background: Photodynamic inactivation (PDI) is an attractive alternative to treat Candida albicans infections, especially considering the spread of resistant strains. The combination of the photophysical advantages of Zn(II) porphyrins (ZnPs) and the plasmonic effect of silver nanoparticles (AgNPs) has the potential to further improve PDI. Here, we propose the novel association of polyvinylpyrrolidone (PVP) coated AgNPs with the cationic ZnPs Zn(II) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin or Zn(II) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin to photoinactivate C. albicans. Methods: AgNPs stabilized with PVP were chosen to allow for (i) overlap between the NP extinction and absorption spectra of ZnPs and (ii) favor AgNPs-ZnPs interaction; prerequisites for exploring the plasmonic effect. Optical and zeta potential (ζ) characterizations were performed, and reactive oxygen species (ROS) generation was also evaluated. Yeasts were incubated with individual ZnPs or their respective AgNPs-ZnPs systems, at various ZnP concentrations and two proportions of AgNPs, then irradiated with a blue LED. Interactions between yeasts and the systems (ZnP alone or AgNPs-ZnPs) were evaluated by fluorescence microscopy. Results: Subtle spectroscopic changes were observed for ZnPs after association with AgNPs, and the ζ analyses confirmed AgNPs-ZnPs interaction. PDI using ZnP-hexyl (0.8 µM) and ZnP-ethyl (5.0 µM) promoted a 3 and 2 log10 reduction of yeasts, respectively. On the other hand, AgNPs-ZnP-hexyl (0.2 µM) and AgNPs-ZnP-ethyl (0.6 µM) systems led to complete fungal eradication under the same PDI parameters and lower porphyrin concentrations. Increased ROS levels and enhanced interaction of yeasts with AgNPs-ZnPs were observed, when compared with ZnPs alone. Conclusion: We applied a facile synthesis of AgNPs which boosted ZnP efficiency. We hypothesize that the plasmonic effect combined with the greater interaction between cells and AgNPs-ZnPs systems resulted in an efficient and improved fungal inactivation. This study provides insight into the application of AgNPs in PDI and helps diversify our antifungal arsenal, encouraging further developments toward inactivation of resistant Candida spp.
Asunto(s)
Nanopartículas del Metal , Porfirinas , Candida albicans , Plata/farmacología , Especies Reactivas de Oxígeno , Povidona , Zinc/farmacologíaRESUMEN
Cutaneous leishmaniasis is a neglected parasitic disease that leads to destructive lesions. The emergence of drug resistance has been a global concern over the past years. Photodynamic therapy (PDT) mediated by a red LED and methylene blue (MB) involves the overproduction of oxidative stress, which oxidizes several cellular biomolecules and prevents the selection of resistant strains. Herein, we investigated the potential of PDT mediated by MB against wild-type and miltefosine-resistant strains of Leishmania amazonensis. As a result, both strains were susceptible to PDT, thus encouraging us to seek the best conditions to overcome the drug resistance problem in cutaneous leishmaniasis.
Asunto(s)
Leishmania , Leishmaniasis Cutánea , Fotoquimioterapia , Humanos , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/patologíaRESUMEN
BACKGROUND: Cutaneous leishmaniasis (CL) is an important tropical neglected disease with broad geographical dispersion. The lack of effective drugs has raised an urgent need to improve CL treatment, and antimicrobial photodynamic therapy (APDT) has been investigated as a new strategy to face it with positive outcomes. Natural compounds have emerged as promising photosensitizers (PSs), but their use in vivo remains unexplored. PURPOSE: In this work, we investigated the potential of three natural anthraquinones (AQs) on CL induced by Leishmania amazonensis in BALB/c mice. STUDY DESIGN/METHODS: ANIMALS WERE INFECTED AND RANDOMLY DIVIDED INTO FOUR GROUPS: CG (control, non-treated group), G5ClSor-gL (treated with 5-chlorosoranjidiol and green LED, 520±10 nm), GSor-bL and GBisor-bL (treated with soranjidiol and bisoranjidiol, respectively, exposed to violet-blue LED, 410±10 nm). All AQs were assayed at 10 µM and LEDs delivered a radiant exposure of 45 J/cm2 with an irradiance of 50 mW/cm2. We assessed the parasite burden in real time for three consecutive days. Lesion evolution and pain score were assessed over 3 weeks after a single APDT session. RESULTS: G5ClSor-gL was able to sustain low levels of parasite burden over time. Besides, GSor-bL showed a smaller lesion area than the control group, inhibiting the disease progression. CONCLUSION: Taken together, our data demonstrate that monoAQs are promising compounds for pursuing the best protocol for treating CL and helping to face this serious health problem. Studies involving host-pathogen interaction as well as monoAQ-mediated PDT immune response are also encouraged.
Asunto(s)
Antiinfecciosos , Leishmaniasis Cutánea , Fotoquimioterapia , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Leishmaniasis Cutánea/tratamiento farmacológico , Antiinfecciosos/uso terapéutico , Antraquinonas/farmacología , Antraquinonas/uso terapéutico , Ratones Endogámicos BALB CRESUMEN
Antimicrobial blue light (aBL) offers efficacy and safety in treating infections. However, the bacterial targets for aBL are still poorly understood and may be dependent on bacterial species. Here, we investigated the biological targets of bacterial killing by aBL (λ = 410 nm) on three pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Initially, we evaluated the killing kinetics of bacteria exposed to aBL and used this information to calculate the lethal doses (LD) responsible for killing 90 and 99.9% of bacteria. We also quantified endogenous porphyrins and assessed their spatial distribution. We then quantified and suppressed reactive oxygen species (ROS) production in bacteria to investigate their role in bacterial killing by aBL. We also assessed aBL-induced DNA damage, protein carbonylation, lipid peroxidation, and membrane permeability in bacteria. Our data showed that P. aeruginosa was more susceptible to aBL (LD99.9 = 54.7 J/cm2) relative to S. aureus (LD99.9 = 158.9 J/cm2) and E. coli (LD99.9 = 195 J/cm2). P. aeruginosa exhibited the highest concentration of endogenous porphyrins and level of ROS production relative to the other species. However, unlike other species, DNA degradation was not observed in P. aeruginosa. Sublethal doses of blue light (
RESUMEN
The unbridled dissemination of multidrug-resistant pathogens is a major threat to global health and urgently demands novel therapeutic alternatives. Antimicrobial photodynamic therapy (aPDT) has been developed as a promising approach to treat localized infections regardless of drug resistance profile or taxonomy. Even though this technique has been known for more than a century, discussions and speculations regarding the biochemical mechanisms of microbial inactivation have never reached a consensus on what is the primary cause of cell death. Since photochemically generated oxidants promote ubiquitous reactions with various biomolecules, researchers simply assumed that all cellular structures are equally damaged. In this study, biochemical, molecular, biological and advanced microscopy techniques were employed to investigate whether protein, membrane or DNA damage correlates better with dose-dependent microbial inactivation kinetics. We showed that although mild membrane permeabilization and late DNA damage occur, no correlation with inactivation kinetics was found. On the other hand, protein degradation was analyzed by three different methods and showed a dose-dependent trend that matches microbial inactivation kinetics. Our results provide a deeper mechanistic understanding of aPDT that can guide the scientific community toward the development of optimized photosensitizing drugs and also rationally propose synergistic combinations with antimicrobial chemotherapy.
Asunto(s)
Antiinfecciosos , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Fotoquimioterapia/métodos , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Viabilidad Microbiana , Antibacterianos/químicaRESUMEN
Several diseases or conditions cause dermatological disorders that hinder the process of skin repair. The search for novel technologies has inspired the combination of stem cell (SC) and light-based therapies to ameliorate skin wound repair. Herein, we systematically revised the impact of photobiomodulation therapy (PBM) combined with SCs in animal models of skin wounds and quantitatively evaluated this effect through a meta-analysis. For inclusion, SCs should be irradiated in vitro or in vivo, before or after being implanted in animals, respectively. The search resulted in nine eligible articles, which were assessed for risk of bias. For the meta-analysis, studies were included only when PBM was applied in vivo, five regarding wound closure, and three to wound strength. Overall, a positive influence of SC + PBM on wound closure (mean difference: 9.69; 95% CI: 5.78-13.61, P < 0.00001) and strength (standardized mean difference: 1.7, 95% CI: 0.68-2.72, P = 0.001) was detected, although studies have shown moderate to high heterogeneity and a lack of information regarding some bias domains. Altogether, PBM seems to be an enabling technology able to be applied postimplantation of SCs for cutaneous regeneration. Our findings may guide future laboratory and clinical studies in hopes of offering wound care patients a better quality of life.
Asunto(s)
Terapia por Luz de Baja Intensidad , Cicatrización de Heridas , Animales , Calidad de Vida , Piel , Tratamiento Basado en Trasplante de Células y TejidosRESUMEN
Regulation of inflammation is a critical process for maintaining physiological homeostasis. The λ-carrageenan (λ-CGN) is a mucopolysaccharide extracted from the cell wall of red algae (Chondrus crispus) capable of inducing acute intestinal inflammation, which is translated into the production of acute phase reactants secreted into the blood circulation. However, the associated mechanisms in vertebrates are not well understood. Here, we investigated the crucial factors behind the inflammatory milieu of λ-CGN-mediated inflammation administered at 0, 1.75, and 3.5% (v/w) by i.p. injection into the peritoneal cavity of adult zebrafish (ZF) (Danio rerio). We found that polymorphonuclear leukocytes (neutrophils) and lymphocytes infiltrating the ZF peritoneal cavity had short-term persistence. Nevertheless, they generate a strong pattern of inflammation that affects systemically and is enough to produce edema in the cavity. Consistent with these findings, cell infiltration, which causes notable tissue changes, resulted in the overexpression of several acute inflammatory markers at the protein level. Using reversed-phase high-performance liquid chromatography followed by a hybrid linear ion-trap mass spectrometry shotgun proteomic approach, we identified 2938 plasma proteins among the animals injected with PBS and 3.5% λ-CGN. First, the bioinformatic analysis revealed the composition of the plasma proteome. Interestingly, 72 commonly expressed proteins were recorded among the treated and control groups, but, surprisingly, 2830 novel proteins were differentially expressed exclusively in the λ-CGN-induced group. Furthermore, from the commonly expressed proteins, compared to the control group 62 proteins got a significant (p < 0.05) upregulation in the λ-CGN-treated group, while the remaining ten proteins were downregulated. Next, we obtained the major protein-protein interaction networks between hub protein clusters in the blood plasma of the λ-CGN induced group. Moreover, to understand the molecular underpinnings of these effects based on the unveiled protein sets, we performed a bioinformatic structural similarity analysis and generated overlapping 3D reconstructions between ZF and humans during acute inflammation. Biological pathway analysis pointed to the activation and abundance of diverse classical immune and acute phase reactants, several catalytic enzymes, and varied proteins supporting the immune response. Together, this information can be used for testing and finding novel pharmacological targets to treat human intestinal inflammatory diseases.
Asunto(s)
Leucocitos , Proteoma , Pez Cebra , Proteínas de Fase Aguda , Animales , Carragenina/metabolismo , Glicosaminoglicanos , Humanos , Inflamación/inducido químicamente , Neutrófilos/metabolismo , Plasma/metabolismo , Proteómica , Pez Cebra/metabolismoRESUMEN
Sporotrichosis is a mycotic infection of humans and animals caused by different fungal species of the genus Sporothrix. Feline sporotrichosis presents a broad spectrum of clinical manifestations and its treatment with classic antifungal drugs is often long and frustrating. Methylene blue-mediated antimicrobial photodynamic therapy (MB-APDT) comes to light as an interesting approach against fungal infections, including sporotrichosis. In this case report, a 1-year-old male cat was diagnosed with sporotrichosis, being confirmed by fungal culture. The cat was treated by MB-APDT combined with oral administration of itraconazole. Following 2 weeks after the end of treatment, the animal was clinically cured, and an additional fungal culture was negative for Sporothrix spp., confirming the total remission of sporotrichosis. No side effects and recurrences were observed after a 3-moth follow-up. MB-APDT is a promising strategy against feline sporotrichosis, however large-scale studies are welcome to confirm its potential.
Asunto(s)
Fotoquimioterapia , Sporothrix , Esporotricosis , Humanos , Masculino , Gatos , Animales , Lactante , Itraconazol/uso terapéutico , Itraconazol/farmacología , Azul de Metileno/uso terapéutico , Azul de Metileno/farmacología , Fotoquimioterapia/métodos , Esporotricosis/tratamiento farmacológico , Esporotricosis/veterinaria , Esporotricosis/diagnóstico , Antifúngicos/uso terapéutico , Antifúngicos/farmacologíaRESUMEN
Candida albicans is the main cause of superficial candidiasis. While the antifungals available are defied by biofilm formation and resistance emergence, antimicrobial photodynamic inactivation (aPDI) arises as an alternative antifungal therapy. The tetracationic metalloporphyrin Zn(II) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (ZnTnHex-2-PyP4+) has high photoefficiency and improved cellular interactions. We investigated the ZnTnHex-2-PyP4+ as a photosensitizer (PS) to photoinactivate yeasts and biofilms of C. albicans strains (ATCC 10231 and ATCC 90028) using a blue light-emitting diode. The photoinactivation of yeasts was evaluated by quantifying the colony forming units. The aPDI of ATCC 90028 biofilms was assessed by the MTT assay, propidium iodide (PI) labeling, and scanning electron microscopy. Mammalian cytotoxicity was investigated in Vero cells using MTT assay. The aPDI (4.3 J/cm2) promoted eradication of yeasts at 0.8 and 1.5 µM of PS for ATCC 10231 and ATCC 90028, respectively. At 0.8 µM and same light dose, aPDI-treated biofilms showed intense PI labeling, about 89% decrease in the cell viability, and structural alterations with reduced hyphae. No considerable toxicity was observed in mammalian cells. Our results introduce the ZnTnHex-2-PyP4+ as a promising PS to photoinactivate both yeasts and biofilms of C. albicans, stimulating studies with other Candida species and resistant isolates.
RESUMEN
Dermatophytosis is a superficial skin infection that widely effects companion animals. Miscrosporum canis is one of the most prevalent species isolated from dogs and cats, and because of the serious zoonotic potential, short-term treatment regimens are preferred to prevent the spread of disease either by direct contact or through contamination of the environment. Antimicrobial photodynamic therapy (APDT) has emerged as a promising strategy able to kill effectively a wide range of pathogens in a short period with minimal morbidity . In this case report, a 7-year-old male dog was diagnosed with dermatophytosis caused by M. canis. Methylene blue-mediated antimicrobial photodynamic therapy (MB-APDT) was applied over the lesions in two sessions with an interval of 7 days. The dog successfully healed, achieving a complete clinical cure after 21 days, without reports of recurrence after a follow-up period of 6 months. Therefore, MB-APDT could be a potential ally of small animal clinicians to treat superficial fungal diseases and should be further explored in Veterinary Medicine.
Asunto(s)
Antiinfecciosos , Enfermedades de los Gatos , Enfermedades de los Perros , Fotoquimioterapia , Tiña , Animales , Antiinfecciosos/uso terapéutico , Enfermedades de los Gatos/tratamiento farmacológico , Gatos , Enfermedades de los Perros/tratamiento farmacológico , Perros , Estudios de Seguimiento , Humanos , Masculino , Azul de Metileno/uso terapéutico , Microsporum , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Tiña/tratamiento farmacológico , Tiña/veterinariaRESUMEN
A significant amount of epidemiological evidence has underlined that human-to-human transmission due to close contacts is considered the main pathway of transmission, however since the SARS-CoV-2 can also survive in aerosols, water, and surfaces, the development and implementation of effective decontamination strategies are urgently required. In this regard, ultraviolet germicidal irradiation (UVGI) using ultraviolet C (UVC) has been proposed to disinfect different environments and surfaces contaminated by SARS-CoV-2. Herein, we performed a systematic scoping review strictly focused on peer-reviewed studies published in English that reported experimental results of UVC-based technologies against the SARS-CoV-2 virus. Studies were retrieved from PubMed and the Web of Science database. After our criterious screening, we identified 13 eligible articles that used UVC-based systems to inactivate SARS-CoV-2. We noticed the use of different UVC wavelengths, technologies, and light doses. The initial viral titer was also heterogeneous among studies. Most studies reported virus inactivation in well plates, even though virus persistence on N95 respirators and different surfaces were also evaluated. SARS-CoV-2 inactivation reached from 90% to 100% depending on experimental conditions. We concluded that there is sufficient evidence to support the use of UVC-based technologies against SARS-CoV-2. However, appropriate implementation is required to guarantee the efficacy and safety of UVC strategies to control the COVID-19 pandemic.
RESUMEN
Cutaneous leishmaniasis (CL) is a major public health problem caused by Leishmania parasites that produce destructive and disfiguring skin conditions. There is an urgent need for alternative topical therapies due to the limitations of current systemic treatments. Recently, we have synthesized nitric oxide-releasing chitosan nanoparticles (NONPs) and shown their potential in vitro against Leishmania amazonensis. Herein we evaluated the application of NONPs for the treatment of CL on infected BALB/c mice. Mice were treated with topical administration of increasing concentrations of NONPs and disease progression was investigated regarding parasite load, lesion thickness, and pain score. As a result, we observed a dose-dependent NONPs effect. Parasite burden and lesion thickness were substantially lower on animals receiving NONPs at a 2 mM concentration compared to untreated control. Moreover, the clinical presentation of the lesions did not show any visible signs of ulcer, suggesting clinical healing in these animals. This successful outcome was sustained for at least 21 days after therapy even in one single dose. Thus, we demonstrate that NONPs are suitable for topical administration, and represent an attractive approach to treat CL.