Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950937

RESUMEN

The capacity to regenerate lost tissues varies significantly among animals. Some phyla, such as the annelids, display substantial regenerating abilities, although little is known about the cellular mechanisms underlying the process. To precisely determine the origin, plasticity and fate of the cells participating in blastema formation and posterior end regeneration after amputation in the annelid Platynereis dumerilii, we developed specific tools to track different cell populations. Using these tools, we find that regeneration is partly promoted by a population of proliferative gut cells whose regenerative potential varies as a function of their position along the antero-posterior axis of the worm. Gut progenitors from anterior differentiated tissues are lineage restricted, whereas gut progenitors from the less differentiated and more proliferative posterior tissues are much more plastic. However, they are unable to regenerate the stem cells responsible for the growth of the worms. Those stem cells are of local origin, deriving from the cells present in the segment abutting the amputation plane, as are most of the blastema cells. Our results favour a hybrid and flexible cellular model for posterior regeneration in Platynereis relying on different degrees of cell plasticity.


Asunto(s)
Plasticidad de la Célula , Proliferación Celular , Poliquetos , Regeneración , Animales , Regeneración/fisiología , Poliquetos/fisiología , Poliquetos/citología , Plasticidad de la Célula/fisiología , Células Madre/citología , Diferenciación Celular/fisiología , Anélidos/fisiología
2.
Biomedicines ; 12(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38672195

RESUMEN

RASopathies, a group of neurodevelopmental congenital disorders stemming from mutations in the RAS/MAPK pathway, present a unique opportunity to delve into the intricacies of complex neurological disorders. Afflicting approximately one in a thousand newborns, RASopathies manifest as abnormalities across multiple organ systems, with a pronounced impact on the central and peripheral nervous system. In the pursuit of understanding RASopathies' neurobiology and establishing phenotype-genotype relationships, in vivo non-mammalian models have emerged as indispensable tools. Species such as Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, Xenopus species and Gallus gallus embryos have proven to be invaluable in shedding light on the intricate pathways implicated in RASopathies. Despite some inherent weaknesses, these genetic models offer distinct advantages over traditional rodent models, providing a holistic perspective on complex genetics, multi-organ involvement, and the interplay among various pathway components, offering insights into the pathophysiological aspects of mutations-driven symptoms. This review underscores the value of investigating the genetic basis of RASopathies for unraveling the underlying mechanisms contributing to broader neurological complexities. It also emphasizes the pivotal role of non-mammalian models in serving as a crucial preliminary step for the development of innovative therapeutic strategies.

3.
Emerg Top Life Sci ; 7(4): 423-437, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38087891

RESUMEN

Neurulation is a critical step in early embryonic development, giving rise to the neural tube, the primordium of the central nervous system in amniotes. Understanding this complex, multi-scale, multi-tissue morphogenetic process is essential to provide insights into normal development and the etiology of neural tube defects. Innovations in tissue engineering have fostered the generation of pluripotent stem cell-based in vitro models, including organoids, that are emerging as unique tools for delving into neurulation mechanisms, especially in the context of human development. Each model captures specific aspects of neural tube morphogenesis, from epithelialization to neural tissue elongation, folding and cavitation. In particular, the recent models of human and mouse trunk morphogenesis, such as gastruloids, that form a spinal neural plate-like or neural tube-like structure are opening new avenues to study normal and pathological neurulation. Here, we review the morphogenetic events generating the neural tube in the mammalian embryo and questions that remain unanswered. We discuss the advantages and limitations of existing in vitro models of neurulation and possible future technical developments.


Asunto(s)
Defectos del Tubo Neural , Neurulación , Ratones , Animales , Humanos , Neurulación/fisiología , Tubo Neural , Placa Neural , Células Madre , Mamíferos
4.
PLoS Genet ; 18(5): e1009782, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35604932

RESUMEN

The hallmarks of the alveolar subclass of rhabdomyosarcoma are chromosomal translocations that generate chimeric PAX3-FOXO1 or PAX7-FOXO1 transcription factors. Overexpression of either PAX-FOXO1s results in related cell transformation in animal models. Yet, in patients the two structural genetic aberrations they derived from are associated with distinct pathological manifestations. To assess the mechanisms underlying these differences, we generated isogenic fibroblast lines expressing either PAX-FOXO1 paralog. Mapping of their genomic recruitment using CUT&Tag revealed that the two chimeric proteins have distinct DNA binding preferences. In addition, PAX7-FOXO1 binding results in greater recruitment of the H3K27ac activation mark than PAX3-FOXO1 binding and is accompanied by greater transcriptional activation of neighbouring genes. These effects are associated with a PAX-FOXO1-specific alteration in the expression of genes regulating cell shape and the cell cycle. Consistently, PAX3-FOXO1 accentuates fibroblast cellular traits associated with contractility and surface adhesion and limits entry into S phase. In contrast, PAX7-FOXO1 drives cells to adopt an amoeboid shape, reduces entry into M phase, and causes increased DNA damage. Altogether, our results argue that the diversity of rhabdomyosarcoma manifestation arises, in part, from the divergence between the genomic occupancy and transcriptional activity of PAX3-FOXO1 and PAX7-FOXO1.


Asunto(s)
Proteínas de Fusión Oncogénica , Factores de Transcripción Paired Box , Rabdomiosarcoma Alveolar , Animales , Línea Celular , Transformación Celular Neoplásica/genética , Fibroblastos , Proteína Forkhead Box O1/genética , Factores de Transcripción Forkhead/genética , Humanos , Proteínas de Fusión Oncogénica/genética , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX7/genética , Factores de Transcripción Paired Box/genética , Rabdomiosarcoma/genética , Rabdomiosarcoma Alveolar/genética
5.
Development ; 148(6)2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782043

RESUMEN

Rostro-caudal patterning of vertebrates depends on the temporally progressive activation of HOX genes within axial stem cells that fuel axial embryo elongation. Whether the pace of sequential activation of HOX genes, the 'HOX clock', is controlled by intrinsic chromatin-based timing mechanisms or by temporal changes in extrinsic cues remains unclear. Here, we studied HOX clock pacing in human pluripotent stem cell-derived axial progenitors differentiating into diverse spinal cord motor neuron subtypes. We show that the progressive activation of caudal HOX genes is controlled by a dynamic increase in FGF signaling. Blocking the FGF pathway stalled induction of HOX genes, while a precocious increase of FGF, alone or with GDF11 ligand, accelerated the HOX clock. Cells differentiated under accelerated HOX induction generated appropriate posterior motor neuron subtypes found along the human embryonic spinal cord. The pacing of the HOX clock is thus dynamically regulated by exposure to secreted cues. Its manipulation by extrinsic factors provides synchronized access to multiple human neuronal subtypes of distinct rostro-caudal identities for basic and translational applications.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Relojes Circadianos , Proteínas de Homeodominio/metabolismo , Neuronas Motoras/metabolismo , Células Madre Pluripotentes/metabolismo , Benzamidas/farmacología , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/farmacología , Diferenciación Celular , Relojes Circadianos/efectos de los fármacos , Difenilamina/análogos & derivados , Difenilamina/farmacología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Factores de Diferenciación de Crecimiento/farmacología , Proteínas de Homeodominio/genética , Humanos , Neuronas Motoras/citología , Células Madre Pluripotentes/citología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Médula Espinal/metabolismo
6.
PLoS Genet ; 16(11): e1009164, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33175861

RESUMEN

The chromosome translocations generating PAX3-FOXO1 and PAX7-FOXO1 chimeric proteins are the primary hallmarks of the paediatric fusion-positive alveolar subtype of Rhabdomyosarcoma (FP-RMS). Despite the ability of these transcription factors to remodel chromatin landscapes and promote the expression of tumour driver genes, they only inefficiently promote malignant transformation in vivo. The reason for this is unclear. To address this, we developed an in ovo model to follow the response of spinal cord progenitors to PAX-FOXO1s. Our data demonstrate that PAX-FOXO1s, but not wild-type PAX3 or PAX7, trigger the trans-differentiation of neural cells into FP-RMS-like cells with myogenic characteristics. In parallel, PAX-FOXO1s remodel the neural pseudo-stratified epithelium into a cohesive mesenchyme capable of tissue invasion. Surprisingly, expression of PAX-FOXO1s, similar to wild-type PAX3/7, reduce the levels of CDK-CYCLIN activity and increase the fraction of cells in G1. Introduction of CYCLIN D1 or MYCN overcomes this PAX-FOXO1-mediated cell cycle inhibition and promotes tumour growth. Together, our findings reveal a mechanism that can explain the apparent limited oncogenicity of PAX-FOXO1 fusion transcription factors. They are also consistent with certain clinical reports indicative of a neural origin of FP-RMS.


Asunto(s)
Transdiferenciación Celular/genética , Transformación Celular Neoplásica/genética , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción Paired Box/metabolismo , Rabdomiosarcoma Alveolar/genética , Animales , Biopsia , Embrión de Pollo , Niño , Ciclina D1/genética , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Invasividad Neoplásica/genética , Células-Madre Neurales/patología , Tubo Neural/citología , Proteínas de Fusión Oncogénica/genética , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Factores de Transcripción Paired Box/genética , Rabdomiosarcoma Alveolar/patología , Fase S/genética
7.
Elife ; 92020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32105214

RESUMEN

The establishment of separated pulmonary and systemic circulation in vertebrates, via cardiac outflow tract (OFT) septation, is a sensitive developmental process accounting for 10% of all congenital anomalies. Neural Crest Cells (NCC) colonising the heart condensate along the primitive endocardial tube and force its scission into two tubes. Here, we show that NCC aggregation progressively decreases along the OFT distal-proximal axis following a BMP signalling gradient. Dullard, a nuclear phosphatase, tunes the BMP gradient amplitude and prevents NCC premature condensation. Dullard maintains transcriptional programs providing NCC with mesenchymal traits. It attenuates the expression of the aggregation factor Sema3c and conversely promotes that of the epithelial-mesenchymal transition driver Twist1. Altogether, Dullard-mediated fine-tuning of BMP signalling ensures the timed and progressive zipper-like closure of the OFT by the NCC and prevents the formation of a heart carrying the congenital abnormalities defining the tetralogy of Fallot.


Asunto(s)
Miocardio/citología , Cresta Neural/citología , Fosfoproteínas Fosfatasas/fisiología , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Animales , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Ratones , Miocardio/metabolismo , Fosfoproteínas Fosfatasas/genética , Transducción de Señal , Proteína Smad1/genética , Proteína Smad5/genética , Proteína Smad8/genética , Tetralogía de Fallot/prevención & control
8.
Nat Cell Biol ; 21(11): 1334-1345, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31685991

RESUMEN

It is well established that haematopoietic stem and progenitor cells (HSPCs) are generated from a transient subset of specialized endothelial cells termed haemogenic, present in the yolk sac, placenta and aorta, through an endothelial-to-haematopoietic transition (EHT). HSPC generation via EHT is thought to be restricted to the early stages of development. By using experimental embryology and genetic approaches in birds and mice, respectively, we document here the discovery of a bone marrow haemogenic endothelium in the late fetus/young adult. These cells are capable of de novo producing a cohort of HSPCs in situ that harbour a very specific molecular signature close to that of aortic endothelial cells undergoing EHT or their immediate progenies, i.e., recently emerged HSPCs. Taken together, our results reveal that HSPCs can be generated de novo past embryonic stages. Understanding the molecular events controlling this production will be critical for devising innovative therapies.


Asunto(s)
Células de la Médula Ósea/metabolismo , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Animales , Animales Modificados Genéticamente , Aorta/citología , Aorta/metabolismo , Células de la Médula Ósea/citología , Diferenciación Celular , Pollos , Embrión de Mamíferos , Embrión no Mamífero , Femenino , Feto , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Hemangioblastos/citología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Heterocigoto , Homocigoto , Masculino , Ratones , Embarazo , Saco Vitelino/citología , Saco Vitelino/crecimiento & desarrollo , Saco Vitelino/metabolismo
9.
Development ; 146(14)2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31239243

RESUMEN

Bone morphogenetic proteins (BMPs) are secreted regulators of cell fate in several developing tissues. In the embryonic spinal cord, they control the emergence of the neural crest, roof plate and distinct subsets of dorsal interneurons. Although a gradient of BMP activity has been proposed to determine cell type identity in vivo, whether this is sufficient for pattern formation in vitro is unclear. Here, we demonstrate that exposure to BMP4 initiates distinct spatial dynamics of BMP signalling within the self-emerging epithelia of both mouse and human pluripotent stem cell-derived spinal organoids. The pattern of BMP signalling results in the stereotyped spatial arrangement of dorsal neural tube cell types, and concentration, timing and duration of BMP4 exposure modulate these patterns. Moreover, differences in the duration of competence time-windows between mouse and human account for the species-specific tempo of neural differentiation. Together, this study describes efficient methods for generating patterned subsets of dorsal interneurons in spinal organoids and supports the conclusion that graded BMP activity orchestrates the spatial organization of the dorsal neural tube cellular diversity in mouse and human.


Asunto(s)
Proteína Morfogenética Ósea 4/fisiología , Diferenciación Celular/genética , Organoides/fisiología , Proteínas Smad/metabolismo , Columna Vertebral/citología , Animales , Linaje de la Célula/genética , Células Cultivadas , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Interneuronas/citología , Interneuronas/fisiología , Ratones , Cresta Neural/citología , Cresta Neural/fisiología , Tubo Neural/citología , Tubo Neural/embriología , Neuronas/citología , Neuronas/fisiología , Organoides/citología , Transducción de Señal/genética , Proteínas Smad/genética
10.
Development ; 146(4)2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30760481

RESUMEN

Specification of neurons in the spinal cord relies on extrinsic and intrinsic signals, which in turn are interpreted by expression of transcription factors. V2 interneurons develop from the ventral aspects of the spinal cord. We report here a novel neuronal V2 subtype, named V2s, in zebrafish embryos. Formation of these neurons depends on the transcription factors sox1a and sox1b. They develop from common gata2a- and gata3-dependent precursors co-expressing markers of V2b and V2s interneurons. Chemical blockage of Notch signalling causes a decrease in V2s and an increase in V2b cells. Our results are consistent with the existence of at least two types of precursor arranged in a hierarchical manner in the V2 domain. V2s neurons grow long ipsilateral descending axonal projections with a short branch at the ventral midline. They acquire a glycinergic neurotransmitter type during the second day of development. Unilateral ablation of V2s interneurons causes a delay in touch-provoked escape behaviour, suggesting that V2s interneurons are involved in fast motor responses.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Interneuronas/metabolismo , Neuronas Motoras/metabolismo , Factores de Transcripción SOXB1/metabolismo , Médula Espinal/metabolismo , Pez Cebra/embriología , Animales , Conducta Animal , Factor de Transcripción GATA2/metabolismo , Genotipo , Glicina/química , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Transgénicos , Mutación , Receptores Notch/metabolismo , Transducción de Señal , Especificidad de la Especie , Médula Espinal/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
11.
Dev Biol ; 432(1): 24-33, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28625870

RESUMEN

Transcription factors are key orchestrators of the emergence of neuronal diversity within the developing spinal cord. As such, the two paralogous proteins Pax3 and Pax7 regulate the specification of progenitor cells within the intermediate neural tube, by defining a neat segregation between those fated to form motor circuits and those involved in the integration of sensory inputs. To attain insights into the molecular means by which they control this process, we have performed detailed phenotypic analyses of the intermediate spinal interneurons (IN), namely the dI6, V0D, V0VCG and V1 populations in compound null mutants for Pax3 and Pax7. This has revealed that the levels of Pax3/7 proteins determine both the dorso-ventral extent and the number of cells produced in each subpopulation; with increasing levels leading to the dorsalisation of their fate. Furthermore, thanks to the examination of mutants in which Pax3 transcriptional activity is skewed either towards repression or activation, we demonstrate that this cell diversification process is mainly dictated by Pax3/7 ability to repress gene expression. Consistently, we show that Pax3 and Pax7 inhibit the expression of Dbx1 and of its repressor Prdm12, fate determinants of the V0 and V1 interneurons, respectively. Notably, we provide evidence for the activity of several cis-regulatory modules of Dbx1 to be sensitive to Pax3 and Pax7 transcriptional activity levels. Altogether, our study provides insights into how the redundancy within a TF family, together with discrete dynamics of expression profiles of each member, are exploited to generate cellular diversity. Furthermore, our data supports the model whereby cell fate choices in the neural tube do not rely on binary decisions but rather on inhibition of multiple alternative fates.


Asunto(s)
Proteínas de Homeodominio/fisiología , Interneuronas/fisiología , Proteínas del Tejido Nervioso/fisiología , Factor de Transcripción PAX3/fisiología , Factor de Transcripción PAX7/fisiología , Médula Espinal/citología , Animales , Diferenciación Celular/fisiología , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Interneuronas/citología , Ratones , Tubo Neural/fisiología , Médula Espinal/embriología , Células Madre/citología , Células Madre/fisiología
12.
Semin Cell Dev Biol ; 44: 75-86, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26400366

RESUMEN

Over the past two decades, Pax proteins have received a lot of attention from researchers working on the generation and assembly of neural circuits during vertebrate development. Through tissue or cell based phenotypic analyses, or more recently using genome-wide approaches, they have highlighted the pleiotropic functions of Pax proteins during neurogenesis. This review discusses the wide range of molecular and cellular mechanisms by which these transcription factors control in time and space the number and identity of neurons produced during development. We first focus on the position of Pax proteins within gene regulatory networks that generate patterns of cellular differentiation within the central nervous system. Next, the architecture of Pax-linked regulatory loops that provide a tempo of differentiation to progenitor cells is presented. Finally, we examine the molecular foundations providing a "multitasking" property to Pax proteins. Amongst the Pax factors that are expressed within the developing nervous system, Pax6 is the most extensively studied and thus holds a dominant position in this article.


Asunto(s)
Redes Reguladoras de Genes , Neuronas/fisiología , Factores de Transcripción Paired Box/genética , Animales , Diferenciación Celular/genética , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción Paired Box/metabolismo
13.
Development ; 141(8): 1726-36, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24715462

RESUMEN

Dorsal spinal neurogenesis is orchestrated by the combined action of signals secreted from the roof plate organizer and a downstream transcriptional cascade. Within this cascade, Msx1 and Msx2, two homeodomain transcription factors (TFs), are induced earlier than bHLH neuralizing TFs. Whereas bHLH TFs have been shown to specify neuronal cell fate, the function of Msx genes remains poorly defined. We describe dramatic alterations of neuronal patterning in Msx1/Msx2 double-mutant mouse embryos. The most dorsal spinal progenitor pool fails to express the bHLH neuralizing TF Atoh1, which results in a lack of Lhx2-positive and Barhl2-positive dI1 interneurons. Neurog1 and Ascl1 expression territories are dorsalized, leading to ectopic dorsal differentiation of dI2 and dI3 interneurons. In proportion, the amount of Neurog1-expressing progenitors appears unaffected, whereas the number of Ascl1-positive cells is increased. These defects occur while BMP signaling is still active in the Msx1/Msx2 mutant embryos. Cell lineage analysis and co-immunolabeling demonstrate that Atoh1-positive cells derive from progenitors expressing both Msx1 and Msx2. In vitro, Msx1 and Msx2 proteins activate Atoh1 transcription by specifically interacting with several homeodomain binding sites in the Atoh1 3' enhancer. In vivo, Msx1 and Msx2 are required for Atoh1 3' enhancer activity and ChIP experiments confirm Msx1 binding to this regulatory sequence. These data support a novel function of Msx1 and Msx2 as transcriptional activators. Our study provides new insights into the transcriptional control of spinal cord patterning by BMP signaling, with Msx1 and Msx2 acting upstream of Atoh1.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Factor de Transcripción MSX1/metabolismo , Médula Espinal/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos/genética , Interneuronas/citología , Interneuronas/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica/genética , Transducción de Señal/genética , Médula Espinal/embriología , Células Madre/metabolismo
14.
Dis Model Mech ; 7(1): 107-17, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24135485

RESUMEN

Fetal valproate syndrome (FVS) is caused by in utero exposure to the drug sodium valproate. Valproate is used worldwide for the treatment of epilepsy, as a mood stabiliser and for its pain-relieving properties. In addition to birth defects, FVS is associated with an increased risk of autism spectrum disorder (ASD), which is characterised by abnormal behaviours. Valproate perturbs multiple biochemical pathways and alters gene expression through its inhibition of histone deacetylases. Which, if any, of these mechanisms is relevant to the genesis of its behavioural side effects is unclear. Neuroanatomical changes associated with FVS have been reported and, among these, altered serotonergic neuronal differentiation is a consistent finding. Altered serotonin homeostasis is also associated with autism. Here we have used a chemical-genetics approach to investigate the underlying molecular defect in a zebrafish FVS model. Valproate causes the selective failure of zebrafish central serotonin expression. It does so by downregulating the proneural gene ascl1b, an ortholog of mammalian Ascl1, which is a known determinant of serotonergic identity in the mammalian brainstem. ascl1b is sufficient to rescue serotonin expression in valproate-treated embryos. Chemical and genetic blockade of the histone deacetylase Hdac1 downregulates ascl1b, consistent with the Hdac1-mediated silencing of ascl1b expression by valproate. Moreover, tonic Notch signalling is crucial for ascl1b repression by valproate. Concomitant blockade of Notch signalling restores ascl1b expression and serotonin expression in both valproate-exposed and hdac1 mutant embryos. Together, these data provide a molecular explanation for serotonergic defects in FVS and highlight an epigenetic mechanism for genome-environment interaction in disease.


Asunto(s)
Anomalías Inducidas por Medicamentos/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Silenciador del Gen , Ácido Valproico/efectos adversos , Proteínas de Pez Cebra/metabolismo , Anomalías Inducidas por Medicamentos/metabolismo , Animales , Anticonvulsivantes/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Trastornos Generalizados del Desarrollo Infantil/genética , Modelos Animales de Enfermedad , Epigénesis Genética , Histona Desacetilasa 1/metabolismo , Homeostasis , Proteínas del Tejido Nervioso , Neuronas/metabolismo , Receptores Notch/metabolismo , Serotonina/metabolismo , Transducción de Señal , Factores de Transcripción , Transgenes , Ácido Valproico/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
15.
PLoS Genet ; 9(10): e1003811, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098141

RESUMEN

Pattern formation in developing tissues is driven by the interaction of extrinsic signals with intrinsic transcriptional networks that together establish spatially and temporally restricted profiles of gene expression. How this process is orchestrated at the molecular level by genomic cis-regulatory modules is one of the central questions in developmental biology. Here we have addressed this by analysing the regulation of Pax3 expression in the context of the developing spinal cord. Pax3 is induced early during neural development in progenitors of the dorsal spinal cord and is maintained as pattern is subsequently elaborated, resulting in the segregation of the tissue into dorsal and ventral subdivisions. We used a combination of comparative genomics and transgenic assays to define and dissect several functional cis-regulatory modules associated with the Pax3 locus. We provide evidence that the coordinated activity of two modules establishes and refines Pax3 expression during neural tube development. Mutational analyses of the initiating element revealed that in addition to Wnt signaling, Nkx family homeodomain repressors restrict Pax3 transcription to the presumptive dorsal neural tube. Subsequently, a second module mediates direct positive autoregulation and feedback to maintain Pax3 expression. Together, these data indicate a mechanism by which transient external signals are converted into a sustained expression domain by the activities of distinct regulatory elements. This transcriptional logic differs from the cross-repression that is responsible for the spatiotemporal patterns of gene expression in the ventral neural tube, suggesting that a variety of circuits are deployed within the neural tube regulatory network to establish and elaborate pattern formation.


Asunto(s)
Desarrollo Embrionario/genética , Redes Reguladoras de Genes/genética , Ratones/genética , Tubo Neural/crecimiento & desarrollo , Factores de Transcripción Paired Box/genética , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Embrión de Pollo , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Ratones/metabolismo , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/metabolismo , Médula Espinal/crecimiento & desarrollo , Vía de Señalización Wnt , Pez Cebra/crecimiento & desarrollo
16.
Development ; 140(8): 1740-50, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23533174

RESUMEN

The development of a functional tissue requires coordination of the amplification of progenitors and their differentiation into specific cell types. The molecular basis for this coordination during myotome ontogeny is not well understood. Dermomytome progenitors that colonize the myotome first acquire myocyte identity and subsequently proliferate as Pax7-expressing progenitors before undergoing terminal differentiation. We show that the dynamics of sonic hedgehog (Shh) signaling is crucial for this transition in both avian and mouse embryos. Initially, Shh ligand emanating from notochord/floor plate reaches the dermomyotome, where it both maintains the proliferation of dermomyotome cells and promotes myogenic differentiation of progenitors that colonized the myotome. Interfering with Shh signaling at this stage produces small myotomes and accumulation of Pax7-expressing progenitors. An in vivo reporter of Shh activity combined with mouse genetics revealed the existence of both activator and repressor Shh activities operating on distinct subsets of cells during the epaxial myotomal maturation. In contrast to observations in mice, in avians Shh promotes the differentiation of both epaxial and hypaxial myotome domains. Subsequently, myogenic progenitors become refractory to Shh; this is likely to occur at the level of, or upstream of, smoothened signaling. The end of responsiveness to Shh coincides with, and is thus likely to enable, the transition into the growth phase of the myotome.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Desarrollo de Músculos/fisiología , Transducción de Señal/fisiología , Células Madre/citología , Animales , Proliferación Celular , Embrión de Pollo , Cartilla de ADN/genética , Electroporación , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Notocorda/trasplante , Factor de Transcripción PAX7/metabolismo , Codorniz , Células Madre/fisiología , Factores de Tiempo
17.
Cell ; 148(1-2): 273-84, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22265416

RESUMEN

Secreted signals, known as morphogens, provide the positional information that organizes gene expression and cellular differentiation in many developing tissues. In the vertebrate neural tube, Sonic Hedgehog (Shh) acts as a morphogen to control the pattern of neuronal subtype specification. Using an in vivo reporter of Shh signaling, mouse genetics, and systems modeling, we show that a spatially and temporally changing gradient of Shh signaling is interpreted by the regulatory logic of a downstream transcriptional network. The design of the network, which links three transcription factors to Shh signaling, is responsible for differential spatial and temporal gene expression. In addition, the network renders cells insensitive to fluctuations in signaling and confers hysteresis--memory of the signal. Our findings reveal that morphogen interpretation is an emergent property of the architecture of a transcriptional network that provides robustness and reliability to tissue patterning.


Asunto(s)
Redes Reguladoras de Genes , Proteínas Hedgehog/metabolismo , Tubo Neural/metabolismo , Transducción de Señal , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas del Ojo/genética , Proteínas Hedgehog/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra , Proteína Gli3 con Dedos de Zinc
18.
Development ; 137(24): 4271-82, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21098568

RESUMEN

Sonic hedgehog signalling is essential for the embryonic development of many tissues including the central nervous system, where it controls the pattern of cellular differentiation. A genome-wide screen of neural progenitor cells to evaluate the Shh signalling-regulated transcriptome identified the forkhead transcription factor Foxj1. In both chick and mouse Foxj1 is expressed in the ventral midline of the neural tube in cells that make up the floor plate. Consistent with the role of Foxj1 in the formation of long motile cilia, floor plate cells produce cilia that are longer than the primary cilia found elsewhere in the neural tube, and forced expression of Foxj1 in neuroepithelial cells is sufficient to increase cilia length. In addition, the expression of Foxj1 in the neural tube and in an Shh-responsive cell line attenuates intracellular signalling by decreasing the activity of Gli proteins, the transcriptional mediators of Shh signalling. We show that this function of Foxj1 depends on cilia. Nevertheless, floor plate identity and ciliogenesis are unaffected in mouse embryos lacking Foxj1 and we provide evidence that additional transcription factors expressed in the floor plate share overlapping functions with Foxj1. Together, these findings identify a novel mechanism that modifies the cellular response to Shh signalling and reveal morphological and functional features of the amniote floor plate that distinguish these cells from the rest of the neuroepithelium.


Asunto(s)
Cilios/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas Hedgehog/metabolismo , Tubo Neural/embriología , Tubo Neural/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Embrión de Pollo , Pollos , Cilios/ultraestructura , Citometría de Flujo , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Proteínas Hedgehog/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Células 3T3 NIH , Tubo Neural/ultraestructura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra
19.
PLoS Biol ; 8(6): e1000382, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20532235

RESUMEN

Morphogens are secreted signalling molecules that act in a graded manner to control the pattern of cellular differentiation in developing tissues. An example is Sonic hedgehog (Shh), which acts in several developing vertebrate tissues, including the central nervous system, to provide positional information during embryonic patterning. Here we address how Shh signalling assigns the positional identities of distinct neuronal subtype progenitors throughout the ventral neural tube. Assays of intracellular signal transduction and gene expression indicate that the duration as well as level of signalling is critical for morphogen interpretation. Progenitors of the ventral neuronal subtypes are established sequentially, with progressively more ventral identities requiring correspondingly higher levels and longer periods of Shh signalling. Moreover, cells remain sensitive to changes in Shh signalling for an extended time, reverting to antecedent identities if signalling levels fall below a threshold. Thus, the duration of signalling is important not only for the assignment but also for the refinement and maintenance of positional identity. Together the data suggest a dynamic model for ventral neural tube patterning in which positional information corresponds to the time integral of Shh signalling. This suggests an alternative to conventional models of morphogen action that rely solely on the level of signalling.


Asunto(s)
Proteínas Hedgehog/fisiología , Tubo Neural/embriología , Vertebrados/embriología , Animales , Proteínas Hedgehog/metabolismo , Transducción de Señal
20.
Genes Dev ; 24(11): 1186-200, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20516201

RESUMEN

The secreted ligand Sonic Hedgehog (Shh) organizes the pattern of cellular differentiation in the ventral neural tube. For the five neuronal subtypes, increasing levels and durations of Shh signaling direct progenitors to progressively more ventral identities. Here we demonstrate that this mode of action is not applicable to the generation of the most ventral cell type, the nonneuronal floor plate (FP). In chick and mouse embryos, FP specification involves a biphasic response to Shh signaling that controls the dynamic expression of key transcription factors. During gastrulation and early somitogenesis, FP induction depends on high levels of Shh signaling. Subsequently, however, prospective FP cells become refractory to Shh signaling, and this is a prerequisite for the elaboration of their identity. This prompts a revision to the model of graded Shh signaling in the neural tube, and provides insight into how the dynamics of morphogen signaling are deployed to extend the patterning capacity of a single ligand. In addition, we provide evidence supporting a common scheme for FP specification by Shh signaling that reconciles mechanisms of FP development in teleosts and amniotes.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas Hedgehog/metabolismo , Tubo Neural/citología , Tubo Neural/crecimiento & desarrollo , Transducción de Señal , Células Madre/fisiología , Animales , Biomarcadores/metabolismo , Embrión de Pollo , Regulación hacia Abajo , Embrión de Mamíferos , Embrión no Mamífero , Femenino , Ratones , Neuronas/citología , Somitos/crecimiento & desarrollo , Factores de Tiempo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...