Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(37): 20389-20402, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37683125

RESUMEN

Through nitrosylation of [Fe-S] proteins, or the chelatable iron pool, a dinitrosyl iron unit (DNIU) [Fe(NO)2] embedded in the form of low-molecular-weight/protein-bound dinitrosyl iron complexes (DNICs) was discovered as a metallocofactor assembled under inflammatory conditions with elevated levels of nitric oxide (NO) and superoxide (O2-). In an attempt to gain biomimetic insights into the unexplored transformations of the DNIU under inflammation, we investigated the reactivity toward O2- by a series of DNICs [(NO)2Fe(µ-MePyr)2Fe(NO)2] (1) and [(NO)2Fe(µ-SEt)2Fe(NO)2] (3). During the superoxide-induced conversion of DNIC 1 into DNIC [(K-18-crown-6-ether)2(NO2)][Fe(µ-MePyr)4(µ-O)2(Fe(NO)2)4] (2-K-crown) and a [Fe3+(MePyr)x(NO2)y(O)z]n adduct, stoichiometric NO monooxygenation yielding NO2- occurs without the transient formation of peroxynitrite-derived •OH/•NO2 species. To study the isoelectronic reaction of O2(g) and one-electron-reduced DNIC 1, a DNIC featuring an electronically localized {Fe(NO)2}9-{Fe(NO)2}10 electronic structure, [K-18-crown-6-ether][(NO)2Fe(µ-MePyr)2Fe(NO)2] (1-red), was successfully synthesized and characterized. Oxygenation of DNIC 1-red leads to the similar assembly of DNIC 2-K-crown, of which the electronic structure is best described as paramagnetic with weak antiferromagnetic coupling among the four S = 1/2 {FeIII(NO-)2}9 units and S = 5/2 Fe3+ center. In contrast to DNICs 1 and 1-red, DNICs 3 and [K-18-crown-6-ether][(NO)2Fe(µ-SEt)2Fe(NO)2] (3-red) display a reversible equilibrium of "3 + O2- ⇋ 3-red + O2(g)", which is ascribed to the covalent [Fe(µ-SEt)2Fe] core and redox-active [Fe(NO)2] unit. Based on this study, the supporting/bridging ligands in dinuclear DNIC 1/3 (or 1-red/3-red) control the selective monooxygenation of NO and redox interconversion between O2- and O2 during reaction with O2- (or O2).

2.
ACS Cent Sci ; 6(11): 2088-2096, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33274285

RESUMEN

Singlet fission has the potential to surpass current efficiency limits in next-generation photovoltaics and to find use in quantum information science. Despite the demonstration of singlet fission in various materials, there is still a great need for fundamental design principles that allow for tuning of photophysical parameters, including the rate of fission and triplet lifetimes. Here, we describe the synthesis and photophysical characterization of a novel bipentacene dipyridyl pyrrole (HDPP-Pent) and its Li- and K-coordinated derivatives. HDPP-Pent undergoes singlet fission at roughly 50% efficiency (τSF = 730 ps), whereas coordination in the Li complex induces significant structural changes to generate a dimer, resulting in a 7-fold rate increase (τSF = 100 ps) and more efficient singlet fission with virtually no sacrifice in triplet lifetime. We thus illustrate novel design principles to produce favorable singlet fission properties, wherein through-space control can be achieved via coordination chemistry-induced multipentacene assembly.

3.
J Phys Chem A ; 124(44): 9252-9260, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33112149

RESUMEN

Recent interest in transition-metal complexes as potential quantum bits (qubits) has reinvigorated the investigation of fundamental contributions to electron spin relaxation in various ligand scaffolds. From quantum computers to chemical and biological sensors, interest in leveraging the quantum properties of these molecules has opened a discussion of the requirements to maintain coherence over a large temperature range, including near room temperature. Here we compare temperature-, magnetic field position-, and concentration-dependent electron spin relaxation in copper(II) phthalocyanine (CuPc) and vanadyl phthalocyanine (VOPc) doped into diamagnetic hosts. While VOPc demonstrates coherence up to room temperature, CuPc coherence times become rapidly T1-limited with increasing temperature, despite featuring a more covalent ground-state wave function than VOPc. As rationalized by a ligand field model, this difference is ascribed to different spin-orbit coupling (SOC) constants for Cu(II) versus V(IV). The manifestation of SOC contributions to spin-phonon coupling and electron spin relaxation in different ligand fields is discussed, allowing for a further understanding of the competing roles of SOC and covalency in electron spin relaxation.

4.
Inorg Chem ; 58(24): 16800-16817, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31769293

RESUMEN

The entatic or rack-induced state is a core concept in bioinorganic chemistry. In its simplest form, it is present when a protein scaffold places a transition metal ion and its first coordination sphere into an energized geometric and electronic structure that differs significantly from that of the relaxed form. This energized complex can exhibit special properties. Under this purview, however, entatic states are hardly unique to bioinorganic chemistry, and their effects can be found throughout a variety of important chemistries and materials science applications. Despite this broad influence, there are only a few examples where entatic effects have been quantified. Here we extend the entatic concept more generally to photophysical processes by developing a combined experimental and computational methodology to quantify entatic states across an entire class of functional molecules, e.g., Cu-based photosensitizers. These metal complexes have a broad range of applications, including solar electricity generation, solar fuels synthesis, organic light emitting diodes (OLEDs), and photoredox catalysis. As a direct consequence of quantifying entatic states, this methodology allows the disentanglement of steric and electronic contributions to excited state dynamics. Thus, before embarking on the syntheses of new Cu-based photosensitizers, the correlations described herein can be used as an estimate of entatic and electronic contributions and thus guide ligand design and the development of next-generation transition metal complexes with improved or tailored excited state dynamics. Lastly, entatic energies in some Cu photosensitizers are the largest yet quantified and are found here to approach 20 kcal/mol relative to the conformationally flexible [Cu(phen)2]+. These energetics are significant relative to typical chemical driving forces and barriers, highlighting the utility in extending entatic state descriptors to new classes of molecules and materials with interesting functional properties involving the coupling between electron and vibrational dynamics.

5.
Organometallics ; 33(20): 5874-5881, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25364092

RESUMEN

Acylnickel(II) complexes feature prominently in cross-electrophile coupling (XEC) reactions that form ketones, yet their reactivity has not been systematically investigated. We present here our studies on the reactivity of acylnickel(II) complexes with a series of carbon electrophiles. Bromobenzene, α-chloroethylbenzene, bromooctane, and iodooctane were reacted with (dtbbpy)NiII(C(O)C5H11)(Br) (1b) and (dtbbpy)NiII(C(O)tolyl)(Br) (1c) to form a variety of organic products. While reactions with bromobenzene formed complex mixtures of ketones, reactions with α-chloroethylbenzene were highly selective for the cross-ketone product. Reactions with iodooctane and bromooctane also produced the cross-ketone product, but in intermediate yield and selectivity. In most cases the presence or absence of a chemical reductant (zinc) had only a small effect on the selectivity of the reaction. The coupling of 1c with iodooctane (60% yield) was translated into a catalytic reaction, the carbonylative coupling of bromoarenes with primary bromoalkanes (six examples, 60% average yield).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...