Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(7): e3002696, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38959200

RESUMEN

Sterile alpha motif domain-containing proteins 9 and 9-like (SAMD9/9L) are associated with life-threatening genetic diseases in humans and are restriction factors of poxviruses. Yet, their cellular function and the extent of their antiviral role are poorly known. Here, we found that interferon-stimulated human SAMD9L restricts HIV-1 in the late phases of replication, at the posttranscriptional and prematuration steps, impacting viral translation and, possibly, endosomal trafficking. Surprisingly, the paralog SAMD9 exerted an opposite effect, enhancing HIV-1. More broadly, we showed that SAMD9L restricts primate lentiviruses, but not a gammaretrovirus (MLV), nor 2 RNA viruses (arenavirus MOPV and rhabdovirus VSV). Using structural modeling and mutagenesis of SAMD9L, we identified a conserved Schlafen-like active site necessary for HIV-1 restriction by human and a rodent SAMD9L. By testing a gain-of-function constitutively active variant from patients with SAMD9L-associated autoinflammatory disease, we determined that SAMD9L pathogenic functions also depend on the Schlafen-like active site. Finally, we found that the constitutively active SAMD9L strongly inhibited HIV, MLV, and, to a lesser extent, MOPV. This suggests that the virus-specific effect of SAMD9L may involve its differential activation/sensing and the virus ability to evade from SAMD9L restriction. Overall, our study identifies SAMD9L as an HIV-1 antiviral factor from the cell autonomous immunity and deciphers host determinants underlying the translational repression. This provides novel links and therapeutic avenues against viral infections and genetic diseases.


Asunto(s)
VIH-1 , Lentivirus de los Primates , Replicación Viral , Humanos , VIH-1/genética , VIH-1/fisiología , Animales , Lentivirus de los Primates/genética , Lentivirus de los Primates/metabolismo , Células HEK293 , Biosíntesis de Proteínas , Factores de Restricción Antivirales , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Infecciones por VIH/virología , Infecciones por VIH/tratamiento farmacológico , Proteínas Supresoras de Tumor
2.
NAR Cancer ; 6(2): zcae019, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38690580

RESUMEN

Amino acid bioavailability impacts mRNA translation in a codon-dependent manner. Here, we report that the anti-cancer MAPK inhibitors (MAPKi) decrease the intracellular concentration of aspartate and glutamate in melanoma cells. This coincides with the accumulation of ribosomes on codons corresponding to these amino acids and triggers the translation-dependent degradation of mRNAs encoding aspartate- and glutamate-rich proteins, involved in DNA metabolism such as DNA replication and repair. Consequently, cells that survive MAPKi degrade aspartate and glutamate likely to generate energy, which simultaneously decreases their requirement for amino acids due to the downregulation of aspartate- and glutamate-rich proteins involved in cell proliferation. Concomitantly, the downregulation of aspartate- and glutamate-rich proteins involved in DNA repair increases DNA damage loads. Thus, DNA repair defects, and therefore mutations, are at least in part a secondary effect of the metabolic adaptation of cells exposed to MAPKi.

3.
Genome Res ; 34(3): 394-409, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38508694

RESUMEN

mRNA translation and decay are tightly interconnected processes both in the context of mRNA quality-control pathways and for the degradation of functional mRNAs. Cotranslational mRNA degradation through codon usage, ribosome collisions, and the recruitment of specific proteins to ribosomes is an important determinant of mRNA turnover. However, the extent to which translation-dependent mRNA decay (TDD) and translation-independent mRNA decay (TID) pathways participate in the degradation of mRNAs has not been studied yet. Here we describe a comprehensive analysis of basal and signal-induced TDD and TID in mouse primary CD4+ T cells. Our results indicate that most cellular transcripts are decayed to some extent in a translation-dependent manner. Our analysis further identifies the length of untranslated regions, the density of ribosomes, and GC3 content as important determinants of TDD magnitude. Consistently, all transcripts that undergo changes in ribosome density within their coding sequence upon T cell activation display a corresponding change in their TDD level. Moreover, we reveal a dynamic modulation in the relationship between GC3 content and TDD upon T cell activation, with a reversal in the impact of GC3- and AU3-rich codons. Altogether, our data show a strong and dynamic interconnection between mRNA translation and decay in mammalian primary cells.


Asunto(s)
Activación de Linfocitos , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero , Ribosomas , Ribosomas/metabolismo , Animales , Ratones , ARN Mensajero/metabolismo , ARN Mensajero/genética , Linfocitos T CD4-Positivos/metabolismo , Ratones Endogámicos C57BL , Linfocitos T/metabolismo
4.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38418089

RESUMEN

ISG20 is an IFN-induced 3'-5' RNA exonuclease that acts as a broad antiviral factor. At present, the features that expose RNA to ISG20 remain unclear, although recent studies have pointed to the modulatory role of epitranscriptomic modifications in the susceptibility of target RNAs to ISG20. These findings raise the question as to how cellular RNAs, on which these modifications are abundant, cope with ISG20. To obtain an unbiased perspective on this topic, we used RNA-seq and biochemical assays to identify elements that regulate the behavior of RNAs against ISG20. RNA-seq analyses not only indicate a general preservation of the cell transcriptome, but they also highlight a small, but detectable, decrease in the levels of histone mRNAs. Contrarily to all other cellular ones, histone mRNAs are non-polyadenylated and possess a short stem-loop at their 3' end, prompting us to examine the relationship between these features and ISG20 degradation. The results we have obtained indicate that poly(A)-binding protein loading on the RNA 3' tail provides a primal protection against ISG20, easily explaining the overall protection of cellular mRNAs observed by RNA-seq. Terminal stem-loop RNA structures have been associated with ISG20 protection before. Here, we re-examined this question and found that the balance between resistance and susceptibility to ISG20 depends on their thermodynamic stability. These results shed new light on the complex interplay that regulates the susceptibility of different classes of viruses against ISG20.


Asunto(s)
Exonucleasas , Exorribonucleasas , Exonucleasas/genética , Exonucleasas/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Histonas , Replicación Viral/fisiología
5.
Nat Commun ; 14(1): 694, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755036

RESUMEN

Type I and III interferons (IFN-I/λ) are important antiviral mediators against SARS-CoV-2 infection. Here, we demonstrate that plasmacytoid dendritic cells (pDC) are the predominant IFN-I/λ source following their sensing of SARS-CoV-2-infected cells. Mechanistically, this short-range sensing by pDCs requires sustained integrin-mediated cell adhesion with infected cells. In turn, pDCs restrict viral spread by an IFN-I/λ response directed toward SARS-CoV-2-infected cells. This specialized function enables pDCs to efficiently turn-off viral replication, likely via a local response at the contact site with infected cells. By exploring the pDC response in SARS-CoV-2 patients, we further demonstrate that pDC responsiveness inversely correlates with the severity of the disease. The pDC response is particularly impaired in severe COVID-19 patients. Overall, we propose that pDC activation is essential to control SARS-CoV-2-infection. Failure to develop this response could be important to understand severe cases of COVID-19.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , SARS-CoV-2/metabolismo , Antivirales/metabolismo , Células Dendríticas/metabolismo , Interferón lambda
6.
Nat Commun ; 14(1): 356, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690642

RESUMEN

Embryonic stem cell (ESC) fate decisions are regulated by a complex circuitry that coordinates gene expression at multiple levels from chromatin to mRNA processing. Recently, ribosome biogenesis and translation have emerged as key pathways that efficiently control stem cell homeostasis, yet the underlying molecular mechanisms remain largely unknown. Here, we identified RSL24D1 as highly expressed in both mouse and human pluripotent stem cells. RSL24D1 is associated with nuclear pre-ribosomes and is required for the biogenesis of 60S subunits in mouse ESCs. Interestingly, RSL24D1 depletion significantly impairs global translation, particularly of key pluripotency factors and of components from the Polycomb Repressive Complex 2 (PRC2). While having a moderate impact on differentiation, RSL24D1 depletion significantly alters ESC self-renewal and lineage commitment choices. Altogether, these results demonstrate that RSL24D1-dependant ribosome biogenesis is both required to sustain the expression of pluripotent transcriptional programs and to silence PRC2-regulated developmental programs, which concertedly dictate ESC homeostasis.


Asunto(s)
Células Madre Embrionarias , Células Madre Pluripotentes , Humanos , Animales , Ratones , Células Madre Embrionarias/metabolismo , Diferenciación Celular/genética , Complejo Represivo Polycomb 2/metabolismo
7.
EMBO Rep ; 23(11): e54061, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36161446

RESUMEN

Genome-wide screens are powerful approaches to unravel regulators of viral infections. Here, a CRISPR screen identifies the RNA helicase DDX42 as an intrinsic antiviral inhibitor of HIV-1. Depletion of endogenous DDX42 increases HIV-1 DNA accumulation and infection in cell lines and primary cells. DDX42 overexpression inhibits HIV-1 infection, whereas expression of a dominant-negative mutant increases infection. Importantly, DDX42 also restricts LINE-1 retrotransposition and infection with other retroviruses and positive-strand RNA viruses, including CHIKV and SARS-CoV-2. However, DDX42 does not impact the replication of several negative-strand RNA viruses, arguing against an unspecific effect on target cells, which is confirmed by RNA-seq analysis. Proximity ligation assays show DDX42 in the vicinity of viral elements, and cross-linking RNA immunoprecipitation confirms a specific interaction of DDX42 with RNAs from sensitive viruses. Moreover, recombinant DDX42 inhibits HIV-1 reverse transcription in vitro. Together, our data strongly suggest a direct mode of action of DDX42 on viral ribonucleoprotein complexes. Our results identify DDX42 as an intrinsic viral inhibitor, opening new perspectives to target the life cycle of numerous RNA viruses.


Asunto(s)
ARN Helicasas DEAD-box , VIH-1 , Virus ARN Monocatenarios Positivos , Replicación Viral , Humanos , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , VIH-1/fisiología , Virus ARN Monocatenarios Positivos/fisiología , SARS-CoV-2/fisiología
8.
Nat Commun ; 12(1): 5970, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645830

RESUMEN

PIWI-interacting small RNAs (piRNAs) protect the germline genome and are essential for fertility. piRNAs originate from transposable element (TE) RNAs, long non-coding RNAs, or 3´ untranslated regions (3´UTRs) of protein-coding messenger genes, with the last being the least characterized of the three piRNA classes. Here, we demonstrate that the precursors of 3´UTR piRNAs are full-length mRNAs and that post-termination 80S ribosomes guide piRNA production on 3´UTRs in mice and chickens. At the pachytene stage, when other co-translational RNA surveillance pathways are sequestered, piRNA biogenesis degrades mRNAs right after pioneer rounds of translation and fine-tunes protein production from mRNAs. Although 3´UTR piRNA precursor mRNAs code for distinct proteins in mice and chickens, they all harbor embedded TEs and produce piRNAs that cleave TEs. Altogether, we discover a function of the piRNA pathway in fine-tuning protein production and reveal a conserved piRNA biogenesis mechanism that recognizes translating RNAs in amniotes.


Asunto(s)
Regiones no Traducidas 3' , Fertilidad/genética , Biosíntesis de Proteínas , ARN Interferente Pequeño/genética , Ribosomas/genética , Espermatogénesis/genética , Animales , Secuencia de Bases , Pollos , Elementos Transponibles de ADN , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fase Paquiteno , ARN Interferente Pequeño/metabolismo , Ribosomas/metabolismo , Testículo/citología , Testículo/crecimiento & desarrollo , Testículo/metabolismo
9.
Front Genome Ed ; 3: 604371, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34713246

RESUMEN

Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into human blood cells can be challenging. Here, we have utilized "nanoblades," a new technology that delivers a genomic cleaving agent into cells. These are modified murine leukemia virus (MLV) or HIV-derived virus-like particle (VLP), in which the viral structural protein Gag has been fused to Cas9. These VLPs are thus loaded with Cas9 protein complexed with the guide RNAs. Highly efficient gene editing was obtained in cell lines, IPS and primary mouse and human cells. Here, we showed that nanoblades were remarkably efficient for entry into human T, B, and hematopoietic stem and progenitor cells (HSPCs) thanks to their surface co-pseudotyping with baboon retroviral and VSV-G envelope glycoproteins. A brief incubation of human T and B cells with nanoblades incorporating two gRNAs resulted in 40 and 15% edited deletion in the Wiskott-Aldrich syndrome (WAS) gene locus, respectively. CD34+ cells (HSPCs) treated with the same nanoblades allowed 30-40% exon 1 drop-out in the WAS gene locus. Importantly, no toxicity was detected upon nanoblade-mediated gene editing of these blood cells. Finally, we also treated HSPCs with nanoblades in combination with a donor-encoding rAAV6 vector resulting in up to 40% of stable expression cassette knock-in into the WAS gene locus. Summarizing, this new technology is simple to implement, shows high flexibility for different targets including primary immune cells of human and murine origin, is relatively inexpensive and therefore gives important prospects for basic and clinical translation in the area of gene therapy.

10.
Wiley Interdiscip Rev RNA ; 12(6): e1658, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33949788

RESUMEN

Eukaryotic gene expression is closely regulated by translation and turnover of mRNAs. Recent advances highlight the importance of translation in the control of mRNA degradation, both for aberrant and apparently normal mRNAs. During translation, the information contained in mRNAs is decoded by ribosomes, one codon at a time, and tRNAs, by specifically recognizing codons, translate the nucleotide code into amino acids. Such a decoding step does not process regularly, with various obstacles that can hinder ribosome progression, then leading to ribosome stalling or collisions. The progression of ribosomes is constantly monitored by the cell which has evolved several translation-dependent mRNA surveillance pathways, including nonsense-mediated decay (NMD), no-go decay (NGD), and non-stop decay (NSD), to degrade certain problematic mRNAs and the incomplete protein products. Recent progress in sequencing and ribosome profiling has made it possible to discover new mechanisms controlling ribosome dynamics, with numerous crosstalks between translation and mRNA decay. We discuss here various translation features critical for mRNA decay, with particular focus on current insights from the complexity of the genetic code and also the emerging role for the ribosome as a regulatory hub orchestrating mRNA decay, quality control, and stress signaling. Even if the interplay between mRNA translation and degradation is no longer to be demonstrated, a better understanding of their precise coordination is worthy of further investigation. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Asunto(s)
Degradación de ARNm Mediada por Codón sin Sentido , Ribosomas , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
11.
J Vis Exp ; (169)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33871447

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system has democratized genome-editing in eukaryotic cells and led to the development of numerous innovative applications. However, delivery of the Cas9 protein and single-guide RNA (sgRNA) into target cells can be technically challenge. Classical viral vectors, such as those derived from lentiviruses (LVs) or adeno-associated viruses (AAVs), allow for efficient delivery of transgenes coding for the Cas9 protein and its associated sgRNA in many primary cells and in vivo. Nevertheless, these vectors can suffer from drawbacks such as integration of the transgene in the target cell genome, a limited cargo capacity, and long-term expression of the Cas9 protein and guide RNA in target cells. To overcome some of these problems, a delivery vector based on the murine Leukemia virus (MLV) was developed to package the Cas9 protein and its associated guide RNA in the absence of any coding transgene. By fusing the Cas9 protein to the C-terminus of the structural protein Gag from MLV, virus-like particles (VLPs) loaded with the Cas9 protein and sgRNA (named "Nanoblades") were formed. Nanoblades can be collected from the culture medium of producer cells, purified, quantified, and used to transduce target cells and deliver the active Cas9/sgRNA complex. Nanoblades deliver their ribonucleoprotein (RNP) cargo transiently and rapidly in a wide range of primary and immortalized cells and can be programmed for other applications, such as transient transcriptional activation of targeted genes, using modified Cas9 proteins. Nanoblades are capable of in vivo genome-editing in the liver of injected adult mice and in oocytes to generate transgenic animals. Finally, they can be complexed with donor DNA for "transfection-free" homology-directed repair. Nanoblade preparation is simple, relatively low-cost, and can be easily carried out in any cell biology laboratory.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Ribonucleoproteínas/genética , Humanos , Transfección
12.
Nat Commun ; 12(1): 1461, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674575

RESUMEN

The polyglutamine expansion of huntingtin (mHTT) causes Huntington disease (HD) and neurodegeneration, but the mechanisms remain unclear. Here, we found that mHtt promotes ribosome stalling and suppresses protein synthesis in mouse HD striatal neuronal cells. Depletion of mHtt enhances protein synthesis and increases the speed of ribosomal translocation, while mHtt directly inhibits protein synthesis in vitro. Fmrp, a known regulator of ribosome stalling, is upregulated in HD, but its depletion has no discernible effect on protein synthesis or ribosome stalling in HD cells. We found interactions of ribosomal proteins and translating ribosomes with mHtt. High-resolution global ribosome footprint profiling (Ribo-Seq) and mRNA-Seq indicates a widespread shift in ribosome occupancy toward the 5' and 3' end and unique single-codon pauses on selected mRNA targets in HD cells, compared to controls. Thus, mHtt impedes ribosomal translocation during translation elongation, a mechanistic defect that can be exploited for HD therapeutics.


Asunto(s)
Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Fibroblastos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ratones , Neuronas/metabolismo , Ribosomas/genética , Factores de Transcripción/metabolismo , Transcriptoma , Regulación hacia Arriba
13.
Nature ; 590(7847): 660-665, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33597753

RESUMEN

The repair of DNA double-strand breaks (DSBs) is essential for safeguarding genome integrity. When a DSB forms, the PI3K-related ATM kinase rapidly triggers the establishment of megabase-sized, chromatin domains decorated with phosphorylated histone H2AX (γH2AX), which act as seeds for the formation of DNA-damage response foci1. It is unclear how these foci are rapidly assembled to establish a 'repair-prone' environment within the nucleus. Topologically associating domains are a key feature of 3D genome organization that compartmentalize transcription and replication, but little is known about their contribution to DNA repair processes2,3. Here we show that topologically associating domains are functional units of the DNA damage response, and are instrumental for the correct establishment of γH2AX-53BP1 chromatin domains in a manner that involves one-sided cohesin-mediated loop extrusion on both sides of the DSB. We propose a model in which H2AX-containing nucleosomes are rapidly phosphorylated as they actively pass by DSB-anchored cohesin. Our work highlights the importance of chromosome conformation in the maintenance of genome integrity and demonstrates the establishment of a chromatin modification by loop extrusion.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN/química , ADN/metabolismo , Conformación de Ácido Nucleico , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas Cromosómicas no Histona/metabolismo , ADN/genética , Genoma/genética , Histonas/metabolismo , Humanos , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Fosforilación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Cohesinas
14.
Front Immunol ; 12: 796012, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087521

RESUMEN

Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.


Asunto(s)
Regulación de la Expresión Génica , Inmunidad Innata , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Epigénesis Genética , Perfilación de la Expresión Génica/métodos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunomodulación , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Biosíntesis de Proteínas , Estabilidad del ARN , Transducción de Señal
15.
PLoS Biol ; 18(12): e3000969, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33259473

RESUMEN

Pathogens such as Pseudomonas aeruginosa advantageously modify animal host physiology, for example, by inhibiting host protein synthesis. Translational inhibition of insects and mammalian hosts by P. aeruginosa utilizes the well-known exotoxin A effector. However, for the infection of Caenorhabditis elegans by P. aeruginosa, the precise pathways and mechanism(s) of translational inhibition are not well understood. We found that upon exposure to P. aeruginosa PA14, C. elegans undergoes a rapid loss of intact ribosomes accompanied by the accumulation of ribosomes cleaved at helix 69 (H69) of the 26S ribosomal RNA (rRNA), a key part of ribosome decoding center. H69 cleavage is elicited by certain virulent P. aeruginosa isolates in a quorum sensing (QS)-dependent manner and independently of exotoxin A-mediated translational repression. H69 cleavage is antagonized by the 3 major host defense pathways defined by the pmk-1, fshr-1, and zip-2 genes. The level of H69 cleavage increases with the bacterial exposure time, and it is predominantly localized in the worm's intestinal tissue. Genetic and genomic analysis suggests that H69 cleavage leads to the activation of the worm's zip-2-mediated defense response pathway, consistent with translational inhibition. Taken together, our observations suggest that P. aeruginosa deploys a virulence mechanism to induce ribosome degradation and H69 cleavage of host ribosomes. In this manner, P. aeruginosa would impair host translation and block antibacterial responses.


Asunto(s)
Infecciones por Pseudomonas/genética , Pseudomonas aeruginosa/metabolismo , ARN Ribosómico/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/metabolismo , Citocinesis/fisiología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/inmunología , Proteínas Quinasas Activadas por Mitógenos , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad , Percepción de Quorum/genética , ARN Ribosómico/genética , Ribosomas/genética , Ribosomas/metabolismo , Virulencia , Factores de Virulencia/genética
16.
Nat Cell Biol ; 22(3): 353, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066908

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Nat Cell Biol ; 22(2): 200-212, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32015435

RESUMEN

PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs essential for fertility. In adult mouse testes, most piRNAs are derived from long single-stranded RNAs lacking annotated open reading frames (ORFs). The mechanisms underlying how piRNA sequences are defined during the cleavages of piRNA precursors remain elusive. Here, we show that 80S ribosomes translate the 5'-proximal short ORFs (uORFs) of piRNA precursors. The MOV10L1/Armitage RNA helicase then facilitates the translocation of ribosomes into the uORF downstream regions (UDRs). The ribosome-bound UDRs are targeted by piRNA processing machinery, with the processed ribosome-protected regions becoming piRNAs. The dual modes of interaction between ribosomes and piRNA precursors underlie the distinct piRNA biogenesis requirements at uORFs and UDRs. Ribosomes also mediate piRNA processing in roosters and green lizards, implying that this mechanism is evolutionarily conserved in amniotes. Our results uncover a function for ribosomes on non-coding regions of RNAs and reveal the mechanisms underlying how piRNAs are defined.


Asunto(s)
Mitocondrias/genética , Precursores del ARN/genética , ARN Interferente Pequeño/genética , Ribosomas/genética , Testículo/metabolismo , Animales , Pollos , Biología Computacional/métodos , Lagartos , Masculino , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Sistemas de Lectura Abierta , Fase Paquiteno , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Proteínas/genética , Proteínas/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Precursores del ARN/metabolismo , ARN Interferente Pequeño/biosíntesis , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Testículo/citología , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
18.
Nat Metab ; 1(1): 98-110, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-31410392

RESUMEN

The human genome encodes thousands of long non-coding RNAs (lncRNAs), the majority of which are poorly conserved and uncharacterized. Here we identify a primate-specific lncRNA (CHROME), elevated in the plasma and atherosclerotic plaques of individuals with coronary artery disease, that regulates cellular and systemic cholesterol homeostasis. LncRNA CHROME expression is influenced by dietary and cellular cholesterol via the sterol-activated liver X receptor transcription factors, which control genes mediating responses to cholesterol overload. Using gain- and loss-of-function approaches, we show that CHROME promotes cholesterol efflux and HDL biogenesis by curbing the actions of a set of functionally related microRNAs that repress genes in those pathways. CHROME knockdown in human hepatocytes and macrophages increases levels of miR-27b, miR-33a, miR-33b and miR-128, thereby reducing expression of their overlapping target gene networks and associated biologic functions. In particular, cells lacking CHROME show reduced expression of ABCA1, which regulates cholesterol efflux and nascent HDL particle formation. Collectively, our findings identify CHROME as a central component of the non-coding RNA circuitry controlling cholesterol homeostasis in humans.


Asunto(s)
Colesterol/metabolismo , Homeostasis , Primates/genética , Primates/metabolismo , ARN Largo no Codificante/genética , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Hepatocitos/metabolismo , Humanos , Metabolismo de los Lípidos , Receptores X del Hígado/metabolismo , MicroARNs/genética
19.
Genes Dev ; 33(17-18): 1175-1190, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31395742

RESUMEN

The ribosomal DNA (rDNA) represents a particularly unstable locus undergoing frequent breakage. DNA double-strand breaks (DSBs) within rDNA induce both rDNA transcriptional repression and nucleolar segregation, but the link between the two events remains unclear. Here we found that DSBs induced on rDNA trigger transcriptional repression in a cohesin- and HUSH (human silencing hub) complex-dependent manner throughout the cell cycle. In S/G2 cells, transcriptional repression is further followed by extended resection within the interior of the nucleolus, DSB mobilization at the nucleolar periphery within nucleolar caps, and repair by homologous recombination. We showed that nuclear envelope invaginations frequently connect the nucleolus and that rDNA DSB mobilization, but not transcriptional repression, involves the nuclear envelope-associated LINC complex and the actin pathway. Altogether, our data indicate that rDNA break localization at the nucleolar periphery is not a direct consequence of transcriptional repression but rather is an active process that shares features with the mobilization of persistent DSB in active genes and heterochromatin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN Ribosómico/genética , Regulación de la Expresión Génica/genética , ARN Largo no Codificante/metabolismo , Nucléolo Celular/metabolismo , Histonas/metabolismo , Recombinación Homóloga/genética , Membrana Nuclear/metabolismo , Cohesinas
20.
EMBO J ; 38(16): e101955, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31294478

RESUMEN

R-loop disassembly by the human helicase Senataxin contributes to genome integrity and to proper transcription termination at a subset of RNA polymerase II genes. Whether Senataxin also contributes to transcription termination at other classes of genes has remained unclear. Here, we show that Sen1, one of two fission yeast homologues of Senataxin, promotes efficient termination of RNA polymerase III (RNAP3) transcription in vivo. In the absence of Sen1, RNAP3 accumulates downstream of RNAP3-transcribed genes and produces long exosome-sensitive 3'-extended transcripts. Importantly, neither of these defects was affected by the removal of R-loops. The finding that Sen1 acts as an ancillary factor for RNAP3 transcription termination in vivo challenges the pre-existing view that RNAP3 terminates transcription autonomously. We propose that Sen1 is a cofactor for transcription termination that has been co-opted by different RNA polymerases in the course of evolution.


Asunto(s)
ADN Helicasas/metabolismo , ARN Helicasas/metabolismo , ARN Polimerasa III/genética , Schizosaccharomyces/crecimiento & desarrollo , Regulación Fúngica de la Expresión Génica , ARN de Transferencia/química , ARN de Transferencia/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Terminación de la Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...