Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 60(25): 1971-1982, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34121404

RESUMEN

Higher-order structure governs function for many RNAs. However, discerning this structure for large RNA molecules in solution is an unresolved challenge. Here, we present SHAPE-JuMP (selective 2'-hydroxyl acylation analyzed by primer extension and juxtaposed merged pairs) to interrogate through-space RNA tertiary interactions. A bifunctional small molecule is used to chemically link proximal nucleotides in an RNA structure. The RNA cross-link site is then encoded into complementary DNA (cDNA) in a single, direct step using an engineered reverse transcriptase that "jumps" across cross-linked nucleotides. The resulting cDNAs contain a deletion relative to the native RNA sequence, which can be detected by sequencing, that indicates the sites of cross-linked nucleotides. SHAPE-JuMP measures RNA tertiary structure proximity concisely across large RNA molecules at nanometer resolution. SHAPE-JuMP is especially effective at measuring interactions in multihelix junctions and loop-to-helix packing, enables modeling of the global fold for RNAs up to several hundred nucleotides in length, facilitates ranking of structural models by consistency with through-space restraints, and is poised to enable solution-phase structural interrogation and modeling of complex RNAs.


Asunto(s)
ARN/química , Acilación , Reactivos de Enlaces Cruzados/química , ADN Complementario/química , Conformación de Ácido Nucleico , Oxazinas/química , ARN/genética , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/genética , Análisis de Secuencia de ADN
2.
Mol Cell ; 80(5): 892-902.e4, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33188727

RESUMEN

Primary microRNAs (miRNAs) are the precursors of miRNAs that modulate the expression of most mRNAs in humans. They fold up into a hairpin structure that is cleaved at its base by an enzyme complex known as the Microprocessor (Drosha/DGCR8). While many of the molecular details are known, a complete understanding of what features distinguish primary miRNA from hairpin structures in other transcripts is still lacking. We develop a massively parallel functional assay termed Dro-seq (Drosha sequencing) that enables testing of hundreds of known primary miRNA substrates and thousands of single-nucleotide variants. We find an additional feature of primary miRNAs, called Shannon entropy, describing the structural ensemble important for processing. In a deep mutagenesis experiment, we observe particular apical loop U bases, likely recognized by DGCR8, are important for efficient processing. These findings build on existing knowledge about primary miRNA maturation by the Microprocessor and further explore the substrate RNA sequence-structure relationship.


Asunto(s)
MicroARNs , Complejos Multiproteicos , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN , Ribonucleasa III , Animales , Humanos , MicroARNs/química , MicroARNs/genética , MicroARNs/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Células Sf9 , Spodoptera
3.
PLoS Biol ; 17(9): e3000393, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31487286

RESUMEN

The ribosome moves between distinct structural states and is organized into multiple functional domains. Here, we examined hundreds of occurrences of pairwise through-space communication between nucleotides in the ribosome small subunit RNA using RNA interaction groups analyzed by mutational profiling (RING-MaP) single-molecule correlated chemical probing in bacterial cells. RING-MaP revealed four structural communities in the small subunit RNA, each distinct from the organization defined by the RNA secondary structure. The head domain contains 2 structural communities: the outer-head contains the pivot for head swiveling, and an inner-head community is structurally integrated with helix 44 and spans the entire ribosome intersubunit interface. In-cell binding by the antibiotic spectinomycin (Spc) barely perturbs its local binding pocket as revealed by the per-nucleotide chemical probing signal. In contrast, Spc binding overstabilizes long-range RNA-RNA contacts that extend 95 Å across the ribosome that connect the pivot for head swiveling with the axis of intersubunit rotation. The two major motions of the small subunit-head swiveling and intersubunit rotation-are thus coordinated via long-range RNA structural communication, which is specifically modulated by Spc. Single-molecule correlated chemical probing reveals trans-domain structural communication and rationalizes the profound functional effects of binding by a low-molecular-mass antibiotic to the megadalton ribosome.


Asunto(s)
Antibacterianos/farmacología , ARN Ribosómico 16S/metabolismo , Espectinomicina/farmacología , Escherichia coli , ARN Ribosómico 16S/efectos de los fármacos
4.
Methods Mol Biol ; 1870: 81-87, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30539548

RESUMEN

Introduction of chemical labels into biomolecules is of utmost importance in chemical biology research. However, methods for selective chemical labeling of in vitro transcribed RNA are scarce. Herein, we describe experimental details for direct labeling of the 5'-phosphate of RNA using a diazo biotin-reagent, as exemplified on a 110 nucleotide RNA obtained via in vitro transcription. The method exploits the fact that, under neutral buffer conditions (~pH 6.8), the 5'-phosphate carries the only mildly acidic proton in the RNA molecule, which allows for selective functionalization at that site using diazo reagents.


Asunto(s)
Biotina/química , Biotinilación , Compuestos de Diazonio/química , ARN/química , Biotinilación/métodos , Cromatografía Liquida , Espectrometría de Masas , Estructura Molecular , ARN/aislamiento & purificación , Coloración y Etiquetado
5.
Life Sci Alliance ; 1(4): e201800124, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30456373

RESUMEN

Eukaryotic genomes produce RNAs lacking protein-coding potential, with enigmatic roles. We integrated three approaches to study large intervening noncoding RNA (lincRNA) gene functions. First, we profiled mouse embryonic stem cells and neural precursor cells at single-cell resolution, revealing lincRNAs expressed in specific cell types, cell subpopulations, or cell cycle stages. Second, we assembled a transcriptome-wide atlas of nuclear lincRNA degradation by identifying targets of the exosome cofactor Mtr4. Third, we developed a reversible depletion system to separate the role of a lincRNA gene from that of its RNA. Our approach distinguished lincRNA loci functioning in trans from those modulating local gene expression. Some genes express stable and/or abundant lincRNAs in single cells, but many prematurely terminate transcription and produce lincRNAs rapidly degraded by the nuclear exosome. This suggests that besides RNA-dependent functions, lincRNA loci act as DNA elements or through transcription. Our integrative approach helps distinguish these mechanisms.

6.
Cell ; 173(1): 181-195.e18, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29551268

RESUMEN

mRNAs can fold into complex structures that regulate gene expression. Resolving such structures de novo has remained challenging and has limited our understanding of the prevalence and functions of mRNA structure. We use SHAPE-MaP experiments in living E. coli cells to derive quantitative, nucleotide-resolution structure models for 194 endogenous transcripts encompassing approximately 400 genes. Individual mRNAs have exceptionally diverse architectures, and most contain well-defined structures. Active translation destabilizes mRNA structure in cells. Nevertheless, mRNA structure remains similar between in-cell and cell-free environments, indicating broad potential for structure-mediated gene regulation. We find that the translation efficiency of endogenous genes is regulated by unfolding kinetics of structures overlapping the ribosome binding site. We discover conserved structured elements in 35% of UTRs, several of which we validate as novel protein binding motifs. RNA structure regulates every gene studied here in a meaningful way, implying that most functional structures remain to be discovered.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Mensajero/metabolismo , Algoritmos , Sitios de Unión , Sistema Libre de Células , Cartilla de ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Entropía , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , Pliegue del ARN , ARN Mensajero/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Ribosomas/química , Ribosomas/metabolismo , Regiones no Traducidas
7.
RNA ; 23(5): 655-672, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28138060

RESUMEN

RNA-Puzzles is a collective experiment in blind 3D RNA structure prediction. We report here a third round of RNA-Puzzles. Five puzzles, 4, 8, 12, 13, 14, all structures of riboswitch aptamers and puzzle 7, a ribozyme structure, are included in this round of the experiment. The riboswitch structures include biological binding sites for small molecules (S-adenosyl methionine, cyclic diadenosine monophosphate, 5-amino 4-imidazole carboxamide riboside 5'-triphosphate, glutamine) and proteins (YbxF), and one set describes large conformational changes between ligand-free and ligand-bound states. The Varkud satellite ribozyme is the most recently solved structure of a known large ribozyme. All puzzles have established biological functions and require structural understanding to appreciate their molecular mechanisms. Through the use of fast-track experimental data, including multidimensional chemical mapping, and accurate prediction of RNA secondary structure, a large portion of the contacts in 3D have been predicted correctly leading to similar topologies for the top ranking predictions. Template-based and homology-derived predictions could predict structures to particularly high accuracies. However, achieving biological insights from de novo prediction of RNA 3D structures still depends on the size and complexity of the RNA. Blind computational predictions of RNA structures already appear to provide useful structural information in many cases. Similar to the previous RNA-Puzzles Round II experiment, the prediction of non-Watson-Crick interactions and the observed high atomic clash scores reveal a notable need for an algorithm of improvement. All prediction models and assessment results are available at http://ahsoka.u-strasbg.fr/rnapuzzles/.


Asunto(s)
ARN Catalítico/química , Riboswitch , Aminoimidazol Carboxamida/química , Aminoimidazol Carboxamida/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Glutamina/química , Glutamina/metabolismo , Ligandos , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Catalítico/metabolismo , Ribonucleótidos/química , Ribonucleótidos/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
8.
Nat Protoc ; 10(11): 1643-69, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26426499

RESUMEN

Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistries exploit small electrophilic reagents that react with 2'-hydroxyl groups to interrogate RNA structure at single-nucleotide resolution. Mutational profiling (MaP) identifies modified residues by using reverse transcriptase to misread a SHAPE-modified nucleotide and then counting the resulting mutations by massively parallel sequencing. The SHAPE-MaP approach measures the structure of large and transcriptome-wide systems as accurately as can be done for simple model RNAs. This protocol describes the experimental steps, implemented over 3 d, that are required to perform SHAPE probing and to construct multiplexed SHAPE-MaP libraries suitable for deep sequencing. Automated processing of MaP sequencing data is accomplished using two software packages. ShapeMapper converts raw sequencing files into mutational profiles, creates SHAPE reactivity plots and provides useful troubleshooting information. SuperFold uses these data to model RNA secondary structures, identify regions with well-defined structures and visualize probable and alternative helices, often in under 1 d. SHAPE-MaP can be used to make nucleotide-resolution biophysical measurements of individual RNA motifs, rare components of complex RNA ensembles and entire transcriptomes.


Asunto(s)
Biología Computacional/métodos , Biología Molecular/métodos , Mutación , Conformación de Ácido Nucleico , ARN/química , Acilación , Modelos Moleculares , Procesamiento Postranscripcional del ARN
9.
Methods Enzymol ; 549: 165-87, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25432749

RESUMEN

We describe structural analysis of small RNAs by SHAPE chemical probing. RNAs are treated with 1-methyl-7-nitroisatoic anhydride, a reagent that detects local nucleotide flexibility; and N-methylisatoic anhydride and 1-methyl-6-nitroisatoic anhydride, reagents which together detect higher-order and noncanonical interactions. Chemical adducts are quantified as stops during reverse transcriptase-mediated primer extension. Probing information can be used to infer conformational changes and ligand binding and to develop highly accurate models of RNA secondary structures.


Asunto(s)
Electroforesis Capilar/métodos , ARN/química , Riboswitch , Anhídridos/química , Secuencia de Bases , Indicadores y Reactivos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Oxazinas/química , Pliegue del ARN , ortoaminobenzoatos/química
10.
Biochemistry ; 53(43): 6825-33, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25341083

RESUMEN

We introduce a melded chemical and computational approach for probing and modeling higher-order intramolecular tertiary interactions in RNA. 2'-Hydroxyl molecular interference (HMX) identifies nucleotides in highly packed regions of an RNA by exploiting the ability of bulky adducts at the 2'-hydroxyl position to disrupt overall RNA structure. HMX was found to be exceptionally selective for quantitative detection of higher-order and tertiary interactions. When incorporated as experimental constraints in discrete molecular dynamics simulations, HMX information yielded accurate three-dimensional models, emphasizing the power of molecular interference to guide RNA tertiary structure analysis and fold refinement. In the case of a large, multidomain RNA, the Tetrahymena group I intron, HMX identified multiple distinct sets of tertiary structure interaction groups in a single, concise experiment.


Asunto(s)
Bacillus subtilis/química , Escherichia coli/química , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Protozoario/química , Tetrahymena/química
11.
Nat Methods ; 11(9): 959-65, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25028896

RESUMEN

Many biological processes are RNA-mediated, but higher-order structures for most RNAs are unknown, which makes it difficult to understand how RNA structure governs function. Here we describe selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) that makes possible de novo and large-scale identification of RNA functional motifs. Sites of 2'-hydroxyl acylation by SHAPE are encoded as noncomplementary nucleotides during cDNA synthesis, as measured by massively parallel sequencing. SHAPE-MaP-guided modeling identified greater than 90% of accepted base pairs in complex RNAs of known structure, and we used it to define a new model for the HIV-1 RNA genome. The HIV-1 model contains all known structured motifs and previously unknown elements, including experimentally validated pseudoknots. SHAPE-MaP yields accurate and high-resolution secondary-structure models, enables analysis of low-abundance RNAs, disentangles sequence polymorphisms in single experiments and will ultimately democratize RNA-structure analysis.


Asunto(s)
Algoritmos , Análisis Mutacional de ADN/métodos , VIH-1/genética , ARN Viral/genética , Análisis de Secuencia de ARN/métodos , Secuencia de Bases , Datos de Secuencia Molecular , Motivos de Nucleótidos
12.
RNA ; 20(6): 846-54, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24742934

RESUMEN

RNA secondary structure modeling is a challenging problem, and recent successes have raised the standards for accuracy, consistency, and tractability. Large increases in accuracy have been achieved by including data on reactivity toward chemical probes: Incorporation of 1M7 SHAPE reactivity data into an mfold-class algorithm results in median accuracies for base pair prediction that exceed 90%. However, a few RNA structures are modeled with significantly lower accuracy. Here, we show that incorporating differential reactivities from the NMIA and 1M6 reagents--which detect noncanonical and tertiary interactions--into prediction algorithms results in highly accurate secondary structure models for RNAs that were previously shown to be difficult to model. For these RNAs, 93% of accepted canonical base pairs were recovered in SHAPE-directed models. Discrepancies between accepted and modeled structures were small and appear to reflect genuine structural differences. Three-reagent SHAPE-directed modeling scales concisely to structurally complex RNAs to resolve the in-solution secondary structure analysis problem for many classes of RNA.


Asunto(s)
ARN/química , Algoritmos , Emparejamiento Base/genética , Secuencia de Bases , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico
13.
J Am Chem Soc ; 134(32): 13160-3, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22852530

RESUMEN

Many RNA structures are composed of simple secondary structure elements linked by a few critical tertiary interactions. SHAPE chemistry has made interrogation of RNA dynamics at single-nucleotide resolution straightforward. However, de novo identification of nucleotides involved in tertiary interactions remains a challenge. Here we show that nucleotides that form noncanonical or tertiary contacts can be detected by comparing information obtained using two SHAPE reagents, N-methylisatoic anhydride (NMIA) and 1-methyl-6-nitroisatoic anhydride (1M6). Nucleotides that react preferentially with NMIA exhibit slow local nucleotide dynamics and usually adopt the less common C2'-endo ribose conformation. Experiments and first-principles calculations show that 1M6 reacts preferentially with nucleotides in which one face of the nucleobase allows an unhindered stacking interaction with the reagent. Differential SHAPE reactivities were used to detect noncanonical and tertiary interactions in four RNAs with diverse structures and to identify preformed noncanonical interactions in partially folded RNAs. Differential SHAPE reactivity analysis will enable experimentally concise, large-scale identification of tertiary structure elements and ligand binding sites in complex RNAs and in diverse biological environments.


Asunto(s)
Anhídridos/química , Nitrobenzoatos/química , ARN/química , ortoaminobenzoatos/química , Estructura Molecular , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...