RESUMEN
Responses of organisms to climate warming are variable and complex. Effects on species distributions are already evident and mean global surface ocean temperatures are likely to warm by up to 4.1 °C by 2100, substantially impacting the physiology and distributions of ectotherms. The largest marine ectotherm, the whale shark Rhincodon typus, broadly prefers sea surface temperatures (SST) ranging from 23 to 30 °C. Whole-species distribution models have projected a poleward range shift under future scenarios of climate change, but these models do not consider intraspecific variation or phenotypic plasticity in thermal limits when modelling species responses, and the impact of climate warming on the energetic requirements of whale sharks is unknown. Using a dataset of 111 whale shark movement tracks from aggregation sites in five countries across the Indian Ocean and the latest Earth-system modelling produced from Coupled Model Intercomparison Project Phase 6 for the Intergovernmental Panel on Climate Change, we examined how SST and total zooplankton biomass, their main food source, may change in the future, and what this means for the energetic balance and extent of suitable habitat for whale sharks. Earth System Models, under three Shared Socioeconomic Pathways (SSPs; SSP1-2.6, SSP3-7.0 and SSP5-8.5), project that by 2100 mean SST in four regions where whale shark aggregations are found will increase by up to 4.9 °C relative to the present, while zooplankton biomass will decrease. This reduction in zooplankton is projected to be accompanied by an increase in the energetic requirements of whale sharks because warmer water temperatures will increase their metabolic rate. We found marked differences in projected changes in the extent of suitable habitat when comparing a whole-species distribution model to one including regional variation. This suggests that the conventional approach of combining data from different regions within a species' distribution could underestimate the amount of local adaptation in populations, although parameterising local models could also suffer from having insufficient data and lead to model mis-specification or highly uncertain estimates. Our study highlights the need for further research into whale shark thermal tolerances and energetics, the complexities involved in projecting species responses to climate change, and the potential importance of considering intraspecific variation when building species distribution models.
Asunto(s)
Cambio Climático , Ecosistema , Tiburones , Animales , Tiburones/fisiología , Océano Índico , TemperaturaRESUMEN
Skin/soft tissue infections (SSTIs) caused by methicillin-resistant Staphylococcus aureus (MRSA) pose a major healthcare burden. Distinct inflammatory and resolution phases comprise the host immune response to SSTIs. Resolution is a myeloid PPARγ-dependent anti-inflammatory phase that is essential for the clearance of MRSA. However, the signals activating PPARγ to induce resolution remain unknown. Here, we demonstrate that myeloid glucose transporter 1 (GLUT-1) is essential for the onset of resolution. MRSA-challenged macrophages are unsuccessful in generating an oxidative burst or immune radicals in the absence of GLUT-1 due to a reduction in the cellular NADPH pool. This translates in vivo as a significant reduction in lipid peroxidation products required for the activation of PPARγ in MRSA-infected mice lacking myeloid GLUT-1. Chemical induction of PPARγ during infection circumvents this GLUT-1 requirement and improves resolution. Thus, GLUT-1-dependent oxidative burst is essential for the activation of PPARγ and subsequent resolution of SSTIs.
Asunto(s)
Transportador de Glucosa de Tipo 1 , Staphylococcus aureus Resistente a Meticilina , Infecciones de los Tejidos Blandos , Animales , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Ratones , Infecciones de los Tejidos Blandos/microbiología , Infecciones de los Tejidos Blandos/metabolismo , Infecciones de los Tejidos Blandos/patología , PPAR gamma/metabolismo , Infecciones Cutáneas Estafilocócicas/microbiología , Infecciones Cutáneas Estafilocócicas/metabolismo , Infecciones Cutáneas Estafilocócicas/patología , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Macrófagos/microbiología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiologíaRESUMEN
Anthropogenic pressures threaten biodiversity, necessitating conservation actions founded on robust ecological models. However, prevailing models inadequately capture the spatiotemporal variation in environmental pressures faced by species with high mobility or complex life histories, as data are often aggregated across species' life histories or spatial distributions. We highlight the limitations of static models for dynamic species and incorporate life history variation and spatial distributions for species and stressors into a trait-based vulnerability and impact model. We use green sea turtles in the Greater Caribbean Region to demonstrate how vulnerability and anthropogenic impact for a dynamic species change across four life stages. By incorporating life stages into a trait-based vulnerability model, we observed life stage-specific vulnerabilities that were otherwise unnoticed when using an aggregated trait value set. Early life stages were more vulnerable to some stressors, such as inorganic pollution or marine heat waves, and less vulnerable to others, such as bycatch. Incorporating spatial distributions of stressors and life stages revealed impacts differ for each life stage across spatial areas, emphasizing the importance of stage-specific conservation measures. Our approach showcases the importance of incorporating dynamic processes into ecological models and will enable better and more targeted conservation actions for species with complex life histories and high mobility.
Asunto(s)
Tortugas , Animales , Tortugas/fisiología , Biodiversidad , Conservación de los Recursos Naturales , Región del Caribe , Modelos Biológicos , Rasgos de la Historia de Vida , Estadios del Ciclo de Vida , EcosistemaRESUMEN
Depletion of microbiota increases susceptibility to gastrointestinal colonization and subsequent infection by opportunistic pathogens such as methicillin-resistant Staphylococcus aureus (MRSA). How the absence of gut microbiota impacts the evolution of MRSA is unknown. The present report used germ-free mice to investigate the evolutionary dynamics of MRSA in the absence of gut microbiota. Through genomic analyses and competition assays, we found that MRSA adapts to the microbiota-free gut through sequential genetic mutations and structural changes that enhance fitness. Initially, these adaptations increase carbohydrate transport; subsequently, evolutionary pathways largely diverge to enhance either arginine metabolism or cell wall biosynthesis. Increased fitness in arginine pathway mutants depended on arginine catabolic genes, especially nos and arcC, which promote microaerobic respiration and ATP generation, respectively. Thus, arginine adaptation likely improves redox balance and energy production in the oxygen-limited gut environment. Findings were supported by human gut metagenomic analyses, which suggest the influence of arginine metabolism on colonization. Surprisingly, these adaptive genetic changes often reduced MRSA's antimicrobial resistance and virulence. Furthermore, resistance mutation, typically associated with decreased virulence, also reduced colonization fitness, indicating evolutionary trade-offs among these traits. The presence of normal microbiota inhibited these adaptations, preserving MRSA's wild-type characteristics that effectively balance virulence, resistance, and colonization fitness. The results highlight the protective role of gut microbiota in preserving a balance of key MRSA traits for long-term ecological success in commensal populations, underscoring the potential consequences on MRSA's survival and fitness during and after host hospitalization and antimicrobial treatment.
RESUMEN
The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived 'memory' of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.
Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno , Estrés Oxidativo , Percepción de Quorum , Staphylococcus aureus , Transactivadores , Staphylococcus aureus/genética , Staphylococcus aureus/fisiología , Staphylococcus aureus/metabolismo , Percepción de Quorum/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Animales , Transactivadores/metabolismo , Transactivadores/genética , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Ratones , Infecciones Estafilocócicas/microbiología , Viabilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Eliminación de GenRESUMEN
Mathematical and statistical models underlie many of the world's most important fisheries management decisions. Since the 19th century, difficulty calibrating and fitting such models has been used to justify the selection of simple, stationary, single-species models to aid tactical fisheries management decisions. Whereas these justifications are reasonable, it is imperative that we quantify the value of different levels of model complexity for supporting fisheries management, especially given a changing climate, where old methodologies may no longer perform as well as in the past. Here we argue that cost-benefit analysis is an ideal lens to assess the value of model complexity in fisheries management. While some studies have reported the benefits of model complexity in fisheries, modeling costs are rarely considered. In the absence of cost data in the literature, we report, as a starting point, relative costs of single-species stock assessment and marine ecosystem models from two Australian organizations. We found that costs varied by two orders of magnitude, and that ecosystem model costs increased with model complexity. Using these costs, we walk through a hypothetical example of cost-benefit analysis. The demonstration is intended to catalyze the reporting of modeling costs and benefits.
Asunto(s)
Análisis Costo-Beneficio , Ecosistema , Explotaciones Pesqueras , Explotaciones Pesqueras/economía , Australia , Animales , Conservación de los Recursos Naturales/economía , Modelos Biológicos , Peces , Modelos TeóricosRESUMEN
Male contraceptive options and infertility treatments are limited, and almost all innovation has been limited to updates to medically assisted reproduction protocols and methods. To accelerate the development of drugs that can either improve or inhibit fertility, we established a small molecule library as a toolbox for assay development and screening campaigns using human spermatozoa. We have profiled all compounds in the Sperm Toolbox in several automated high-throughput assays that measure stimulation or inhibition of sperm motility or the acrosome reaction. We have assayed motility under non-capacitating and capacitating conditions to distinguish between pathways operating under these different physiological states. We also assayed cell viability to ensure any effects on sperm function are specific. A key advantage of our studies is that all compounds are assayed together in the same experimental conditions, which allows quantitative comparisons of their effects in complementary functional assays. We have combined the resulting datasets to generate fingerprints of the Sperm Toolbox compounds on sperm function. The data are included in an on-line R-based app for convenient querying.
Asunto(s)
Semen , Motilidad Espermática , Humanos , Masculino , Espermatozoides/metabolismo , Reacción Acrosómica , FertilidadRESUMEN
Oceans beyond the continental shelf represent the largest yet least protected environments. The new agreement to increase protection targets to 30% by 2030 and the recent United Nations (UN) High Seas Treaty try to address this gap, and an increase in the declaration of oceanic Marine Protected Areas (oMPAs) in waters beyond 200 m in depth is likely. Here we find that there is contradictory evidence concerning the benefits of oMPAs in terms of protecting pelagic habitats, providing refuge for highly mobile species, and potential fisheries benefits. We discover a mismatch between oMPA management objectives focusing on protection of pelagic habitats and biodiversity, and scientific research focusing on fisheries benefits. We suggest that the solution is to harness emerging technologies to monitor inside and outside oMPAs.
Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Biodiversidad , Océanos y Mares , Explotaciones PesquerasRESUMEN
A double-blind study was performed to test the abuse liability of electronic nicotine delivery systems (ENDS) in young adults; in particular, the influence of nicotine on reward sensitivity was assessed. A total of 53 healthy nonusers participated in experimental sessions during which they played a video game made available on a progressive ratio schedule of reinforcement and self-administered nicotine via ENDS. Participants were randomized into one of three groups. Two groups received either a dedicated concentration of nicotine (6 and 12 mg) or a placebo, and whether they received the placebo or their dedicated nicotine dose was randomly determined on a session-by-session basis to mask the sequencing of drug administration. The third group received only a 0 mg (placebo) vaping device during all sessions. In comparison to all placebo conditions, nicotine-induced reward sensitization was evidenced on behavioral measures of video game reinforcement, but not subjective appraisals of the vaping experience. A 1-month follow-up survey provided evidence that reinforcement enhancement by nicotine predicts increased abuse liability of ENDS. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Humanos , Adulto Joven , Nicotina , Estudios de Seguimiento , Refuerzo en Psicología , RecompensaRESUMEN
The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr increased both respiration and fermentation but decreased ATP levels and growth, suggesting that Δagr cells assume a hyperactive metabolic state in response to reduced metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived "memory" of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Nox2-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.
RESUMEN
Staphylococcus aureus is a major human pathogen capable of causing a variety of diseases ranging from skin and soft tissue infections to systemic presentations such as sepsis, endocarditis, and osteomyelitis. For S. aureus to persist as a pathogen in these environments, it must be able to resist the host immune response, including the production of reactive oxygen and nitrogen species (e.g., nitric oxide, NO·). Extensive work from our lab has shown that S. aureus is highly resistant to NO·, especially in the presence of glucose. RNA-seq performed on S. aureus exposed to NO· in the presence and absence of glucose showed a new system important for NO· resistance-phosphate transport. The phosphate transport systems pstSCAB and nptA are both upregulated upon NO·-exposure, particularly in the presence of glucose. Both are key for phosphate transport at an alkaline pH, which the cytosol of S. aureus becomes under NO· stress. Accordingly, the ΔpstSΔnptA mutant is attenuated under NO stress in vitro as well as in macrophage and murine infection models. This work defines a new role in infection for two phosphate transporters in S. aureus and provides insight into the complex system that is NO· resistance in S. aureus.IMPORTANCEStaphylococcus aureus is a bacterial pathogen capable of causing a wide variety of disease in humans. S. aureus is unique in its ability to resist the host immune response, including the antibacterial compound known as nitric oxide (NO·). We used an RNA-sequencing approach to better understand the impact of NO· on S. aureus in different environments. We discovered that inorganic phosphate transport is induced by the presence of NO·. Phosphate is important for the generation of energy from glucose, a carbon source favored by S. aureus. We show that the absence of these phosphate transporters causes lowered energy levels in S. aureus. We find that these phosphate transporters are essential for S. aureus to grow in the presence of NO· and to cause infection. Our work here contributes significantly to our understanding of S. aureus NO· resistance and provides a new context in which S. aureus phosphate transporters are essential.
RESUMEN
Staphylococcus aureus is a major human pathogen that causes a variety of illnesses, ranging from minor skin and soft tissue infections to more severe systemic infections. Although the primary host immune response can typically clear bacterial infections, S. aureus is uniquely resistant to inflammation. For instance, our laboratory has determined that S. aureus is highly resistant to nitric oxide (NOâ ), an important component of the innate immune response that plays a role in both immunomodulatory and antibacterial processes. Additionally, NOâ and its derivatives can cause damage to S. aureus DNA, more specifically, deamination and/or oxidation of DNA bases; however, regulation and repair mechanisms of DNA in S. aureus are understudied. Thus, we hypothesize that several DNA repair mechanisms may account for the replication fidelity of S. aureus and may contribute to fitness in the presence of NOâ . Here, we show the role of several DNA repair mechanisms in S. aureus. More specifically, we found that recombinational repair genes recJ, recG, and polA may play a role in the repair of NOâ -induced replication fork collapses. We also show the role of the base excision repair pathway protein, MutY, in reducing NOâ -mediated mutagenesis. Overall, our results suggest that NOâ leads to DNA damage, which subsequently induces the activity of several DNA repair pathways, contributing to the replication fidelity and fitness of S. aureus.IMPORTANCEPathogenic bacteria must evolve various mechanisms in order to evade the host immune response that they are infecting. One aspect of the primary host immune response to an infection is the production of an inflammatory effector component, nitric oxide (NOâ ). Staphylococcus aureus has uniquely evolved a diverse array of strategies to circumvent the inhibitory activity of nitric oxide. One such mechanism by which S. aureus has evolved allows the pathogen to survive and maintain its genomic integrity in this environment. For instance, here, our results suggest that S. aureus employs several DNA repair pathways to ensure replicative fitness and fidelity under NOâ stress. Thus, our study presents evidence of an additional strategy that allows S. aureus to evade the cytotoxic effects of host NOâ .
RESUMEN
Body-size relationships between predators and prey exhibit remarkable diversity. However, the assumption that predators typically consume proportionally smaller prey often underlies size-dependent predation in ecosystem models. In reality, some animals can consume larger prey or exhibit limited changes in prey size as they grow larger themselves. These distinct predator-prey size relationships challenge the conventional assumptions of traditional size-based models. Cephalopods, with their diverse feeding behaviours and life histories, offer an excellent case study to investigate the impact of greater biological realism in predator-prey size relationships on energy flow within a size-structured ecosystem model. By categorizing cephalopods into high and low-activity groups, in line with empirically derived, distinct predator-prey size relationships, we found that incorporating greater biological realism in size-based feeding reduced ecosystem biomass and production, while simultaneously increasing biomass stability and turnover. Our results have broad implications for ecosystem modelling, since distinct predator-prey size relationships extend beyond cephalopods, encompassing a wide array of major taxonomic groups from filter-feeding fishes to baleen whales. Incorporating a diversity of size-based feeding in food web models can enhance their ecological and predictive accuracy when studying ecosystem dynamics.
Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Biomasa , Tamaño Corporal , Conducta Alimentaria , Conducta Predatoria , Modelos BiológicosRESUMEN
Anthropogenic activities threaten global biodiversity and ecosystem services. Yet, area-based conservation efforts typically target biodiversity protection whilst minimising conflict with economic activities, failing to consider ecosystem services. Here we identify priority areas that maximise both the protection of mangrove biodiversity and their ecosystem services. We reveal that despite 13.5% of the mangrove distribution being currently strictly protected, all mangrove species are not adequately represented and many areas that provide disproportionally large ecosystem services are missed. Optimising the placement of future conservation efforts to protect 30% of global mangroves potentially safeguards an additional 16.3 billion USD of coastal property value, 6.1 million people, 1173.1 Tg C, and 50.7 million fisher days yr-1. Our findings suggest that there is a pressing need for including ecosystem services in protected area design and that strategic prioritisation and coordination of mangrove conservation could provide substantial benefits to human wellbeing.
Asunto(s)
Biodiversidad , Ecosistema , Humanos , Efectos AntropogénicosRESUMEN
Larvaceans are gelatinous zooplankton abundant throughout the ocean. Larvaceans have been overlooked in research because they are difficult to collect and are perceived as being unimportant in biogeochemical cycles and food-webs. We synthesise evidence that their unique biology enables larvaceans to transfer more carbon to higher trophic levels and deeper into the ocean than is commonly appreciated. Larvaceans could become even more important in the Anthropocene because they eat small phytoplankton that are predicted to become more prevalent under climate change, thus moderating projected future declines in ocean productivity and fisheries. We identify critical knowledge gaps and argue that larvaceans should be incorporated into ecosystem assessments and biogeochemical models to improve predictions of the future ocean.
Asunto(s)
Ecosistema , Zooplancton , Animales , Secuestro de Carbono , Cadena Alimentaria , FitoplanctonRESUMEN
For each assessment cycle of the Intergovernmental Panel on Climate Change (IPCC), researchers in the life sciences are called upon to provide evidence to policymakers planning for a changing future. This research increasingly relies on highly technical and complex outputs from climate models. The strengths and weaknesses of these data may not be fully appreciated beyond the climate modelling community; therefore, uninformed use of raw or preprocessed climate data could lead to overconfident or spurious conclusions. We provide an accessible introduction to climate model outputs that is intended to empower the life science community to robustly address questions about human and natural systems in a changing world.
Asunto(s)
Cambio Climático , Modelos Climáticos , Humanos , PredicciónRESUMEN
Climate change is already having profound effects on biodiversity, but climate change adaptation has yet to be fully incorporated into area-based management tools used to conserve biodiversity, such as protected areas. One main obstacle is the lack of consensus regarding how impacts of climate change can be included in spatial conservation plans. We propose a climate-smart framework that prioritizes the protection of climate refugia-areas of low climate exposure and high biodiversity retention-using climate metrics. We explore four aspects of climate-smart conservation planning: (1) climate model ensembles; (2) multiple emission scenarios; (3) climate metrics; and (4) approaches to identifying climate refugia. We illustrate this framework in the Western Pacific Ocean, but it is equally applicable to terrestrial systems. We found that all aspects of climate-smart conservation planning considered affected the configuration of spatial plans. The choice of climate metrics and approaches to identifying refugia have large effects in the resulting climate-smart spatial plans, whereas the choice of climate models and emission scenarios have smaller effects. As the configuration of spatial plans depended on climate metrics used, a spatial plan based on a single measure of climate change (e.g., warming) will not necessarily be robust against other measures of climate change (e.g., ocean acidification). We therefore recommend using climate metrics most relevant for the biodiversity and region considered based on a single or multiple climate drivers. To include the uncertainty associated with different climate futures, we recommend using multiple climate models (i.e., an ensemble) and emission scenarios. Finally, we show that the approaches we used to identify climate refugia feature trade-offs between: (1) the degree to which they are climate-smart, and (2) their efficiency in meeting conservation targets. Hence, the choice of approach will depend on the relative value that stakeholders place on climate adaptation. By using this framework, protected areas can be designed with improved longevity and thus safeguard biodiversity against current and future climate change. We hope that the proposed climate-smart framework helps transition conservation planning toward climate-smart approaches.
Asunto(s)
Conservación de los Recursos Naturales , Agua de Mar , Conservación de los Recursos Naturales/métodos , Concentración de Iones de Hidrógeno , Biodiversidad , Incertidumbre , Cambio Climático , EcosistemaRESUMEN
The Great Barrier Reef (GBR) is the world's largest coral ecosystem and is threatened by climate change. This study investigated the impact of the 2016 Marine Heatwave (MHW) on plankton associated microbial communities along a â¼800 km transect in the GBR. 16S rRNA gene metabarcoding of archived plankton samples collected from November 2014 to August 2016 in this region showed a significant increase in Planctomycetes and bacteria belonging to the genus Vibrio and Synechococcus during and after the heatwave. Notably, Droplet Digital PCR and targeted metagenomic analysis applied on samples collected four months after the MHW event revealed the presence of several potential pathogenic Vibrio species previously associated with diseases in aquatic animals. Overall, the 2016 MHW significantly impacted the surface picoplankton community and fostered the spread of potentially pathogenic bacteria across the GBR providing an additional threat for marine biodiversity in this area.
Asunto(s)
Antozoos , Microbiota , Animales , Ecosistema , Arrecifes de Coral , Plancton , ARN Ribosómico 16S , Australia , Bacterias/genéticaRESUMEN
Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) rose to clinical dominance decades ago and predominantly manifested as skin and soft-tissue infections (SSTIs). These clones were distinct from those causing hospital acquired (HA-MRSA) infections. Dyzenhaus et al. describe the evolutionary changes necessary for CA-MRSA clones to cause bloodstream infections (BSIs).