Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 616(7957): 457-460, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36858075

RESUMEN

The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test1. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact. On the basis of the change in the binary orbit period2, we find an instantaneous reduction in Dimorphos's along-track orbital velocity component of 2.70 ± 0.10 mm s-1, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact3,4. For a Dimorphos bulk density range of 1,500 to 3,300 kg m-3, we find that the expected value of the momentum enhancement factor, ß, ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg m-3, [Formula: see text]. These ß values indicate that substantially more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos.

2.
Nat Commun ; 13(1): 4589, 2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933392

RESUMEN

Asteroid interiors play a key role in our understanding of asteroid formation and evolution. As no direct interior probing has been done yet, characterisation of asteroids' interiors relies on interpretations of external properties. Here we show, by numerical simulations, that the top-shaped rubble-pile asteroid (101955) Bennu's geophysical response to spinup is highly sensitive to its material strength. This allows us to infer Bennu's interior properties and provide general implications for top-shaped rubble piles' structural evolution. We find that low-cohesion (≲0.78 Pa at surface and ≲1.3 Pa inside) and low-friction (friction angle ≲ 35∘) structures with several high-cohesion internal zones can consistently account for all the known geophysical characteristics of Bennu and explain the absence of moons. Furthermore, we reveal the underlying mechanisms that lead to different failure behaviours and identify the reconfiguration pathways of top-shaped asteroids as functions of their structural properties that either facilitate or prevent the formation of moons.

3.
Phys Rev Lett ; 129(4): 048001, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35939007

RESUMEN

We experimentally measure a three-dimensional (3D) granular system's reversibility under cyclic compression. We image the grains using a refractive-index-matched fluid, then analyze the images using the artificial intelligence of variational autoencoders. These techniques allow us to track all the grains' translations and 3D rotations with accuracy sufficient to infer sliding and rolling displacements. Our observations reveal unique roles played by 3D rotational motions in granular flows. We find that rotations and contact-point motion dominate the dynamics in the bulk, far from the perturbation's source. Furthermore, we determine that 3D rotations are irreversible under cyclic compression. Consequently, contact-point sliding, which is dissipative, accumulates throughout the cycle. Using numerical simulations whose accuracy our experiment supports, we discover that much of the dissipation occurs in the bulk, where grains rotate more than they translate. Our observations suggest that the analysis of 3D rotations is needed for understanding granular materials' unique and powerful ability to absorb and dissipate energy.

4.
Sci Adv ; 8(27): eabm6229, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35857450

RESUMEN

When the OSIRIS-REx spacecraft pressed its sample collection mechanism into the surface of Bennu, it provided a direct test of the poorly understood near-subsurface physical properties of rubble-pile asteroids, which consist of rock fragments at rest in microgravity. Here, we find that the forces measured by the spacecraft are best modeled as a granular bed with near-zero cohesion that is half as dense as the bulk asteroid. The low gravity of a small rubble-pile asteroid such as Bennu effectively weakens its near subsurface by not compressing the upper layers, thereby minimizing the influence of interparticle cohesion on surface geology. The underdensity and weak near subsurface should be global properties of Bennu and not localized to the contact point.

5.
Phys Rev E ; 103(6-1): 062906, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34271747

RESUMEN

We perform experimental and numerical studies of a granular system under cyclic compression to investigate reversibility and memory effects. We focus on the quasistatic forcing of dense systems, which is most relevant to a wide range of geophysical, industrial, and astrophysical problems. We find that soft-sphere simulations with proper stiffness and friction quantitatively reproduce both the translational and rotational displacements of the grains. We then utilize these simulations to demonstrate that such systems are capable of storing the history of previous compressions. While both mean translational and rotational displacements encode such memory, the response is fundamentally different for translations compared to rotations. For translational displacements, this memory of prior forcing depends on the coefficient of static interparticle friction, but rotational memory is not altered by the level of friction.

6.
Phys Rev E ; 100(4-1): 042905, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31771010

RESUMEN

We analyze reversibility of displacements and rotations of spherical grains in three-dimensional compression experiments. Using transparent acrylic beads with cylindrical holes and index matching techniques, we are not only capable of tracking displacements but also analyzing reversibility of rotations. We observe that for moderate compression amplitudes, up to one bead diameter, the translational displacements of the beads after each cycle become mostly reversible after an initial transient. By contrast, granular rotations are largely irreversible. We find a weak correlation between translational and rotational displacements, indicating that rotational reversibility depends on more subtle changes in contact distributions and contact forces between grains compared with displacement reversibility. Three-dimensional rotations in dense granular systems are particularly important, since frictional losses associated with rotations are the dominant mechanism for energy dissipation. As such our work provides a first step toward a thorough study of rotations and tangential forces to understand the granular dynamics in dense systems.

7.
Nature ; 454(7201): 188-91, 2008 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-18615078

RESUMEN

Asteroids with satellites are observed throughout the Solar System, from subkilometre near-Earth asteroid pairs to systems of large and distant bodies in the Kuiper belt. The smallest and closest systems are found among the near-Earth and small inner main-belt asteroids, which typically have rapidly rotating primaries and close secondaries on circular orbits. About 15 per cent of near-Earth and main-belt asteroids with diameters under 10 km have satellites. The mechanism that forms such similar binaries in these two dynamically different populations was hitherto unclear. Here we show that these binaries are created by the slow spinup of a 'rubble pile' asteroid by means of the thermal YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect. We find that mass shed from the equator of a critically spinning body accretes into a satellite if the material is collisionally dissipative and the primary maintains a low equatorial elongation. The satellite forms mostly from material originating near the primary's surface and enters into a close, low-eccentricity orbit. The properties of binaries produced by our model match those currently observed in the small near-Earth and main-belt asteroid populations, including 1999 KW(4) (refs 3, 4).

8.
Nature ; 440(7084): 648-50, 2006 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-16572165

RESUMEN

Saturn's main rings are composed predominantly of water-ice particles ranging between about 1 centimetre and 10 metres in radius. Above this size range, the number of particles drops sharply, according to the interpretation of spacecraft and stellar occultations. Other than the gap moons Pan and Daphnis (the provisional name of S/2005 S1), which have sizes of several kilometres, no individual bodies in the rings have been directly observed, and the population of ring particles larger than ten metres has been essentially unknown. Here we report the observation of four longitudinal double-streaks in an otherwise bland part of the mid-A ring. We infer that these 'propeller'-shaped perturbations arise from the effects of embedded moonlets approximately 40 to 120 m in diameter. Direct observation of this phenomenon validates models of proto-planetary disks in which similar processes are posited. A population of moonlets, as implied by the size distribution that we find, could help explain gaps in the more tenuous regions of the Cassini division and the C ring. The existence of such large embedded moonlets is most naturally compatible with a ring originating in the break-up of a larger body, but accretion from a circumplanetary disk is also plausible if subsequent growth onto large particles occurs after the primary accretion phase has concluded.

9.
Nature ; 421(6923): 608-11, 2003 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-12571589

RESUMEN

Asteroid families are groups of small bodies that share certain orbit and spectral properties. More than 20 families have now been identified, each believed to have resulted from the collisional break-up of a large parent body in a regime where gravity controls the outcome of the collision more than the material strength of the rock. The size and velocity distributions of the family members provide important constraints for testing our understanding of the break-up process, but erosion and dynamical diffusion of the orbits over time can erase the original signature of the collision. The recently identified young Karin family provides a unique opportunity to study a collisional outcome almost unaffected by orbit evolution. Here we report numerical simulations modelling classes of collisions that reproduce the main characteristics of the Karin family. The sensitivity of the outcome of the collision to the internal structure of the parent body allows us to show that the family must have originated from the break-up of a pre-fragmented parent body, and that all large family members formed by the gravitational reaccumulation of smaller bodies. We argue that most of the identified asteroid families are likely to have had a similar history.

10.
Nature ; 417(6890): 697-8, 2002 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-12066166
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA