Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Bone Joint Surg Am ; 99(20): 1737-1744, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-29040128

RESUMEN

BACKGROUND: Despite recent advances, infection remains the most common etiology of arthroplasty failure. Recent work suggests that 25-hydroxyvitamin D (25D) deficiency correlates with the frequency of periprosthetic joint infection (PJI). We endeavored to examine whether 25D3 deficiency leads to increased bacterial burden in vivo in an established mouse model of PJI and, if so, whether this effect can be reversed by preoperative 25D3 supplementation. METHODS: Mice (lys-EGFP) possessing fluorescent neutrophils were fed a vitamin D3-sufficient (n = 20) or deficient (n = 40) diet for 6 weeks. A group of 25D3-deficient mice (n = 20) were "rescued" with 1 intraperitoneal dose of 25D3 at 3 days before surgery. A stainless steel implant was inserted into the knee joint and the joint space was inoculated with bioluminescent Staphylococcus aureus (1 × 10 colony forming units [CFUs]). In vivo imaging was used to monitor bacterial burden and neutrophil infiltration. Blood was drawn to confirm 25D3 levels 3 days before surgery and on postoperative days (PODs) 0 and 14. Mice were killed at POD 21, and CFUs were quantified after culture. Myeloperoxidase (MPO) and ß-N-acetylglucosaminidase (NAG) were assayed to look at neutrophil infiltration and activated tissue macrophage recruitment, respectively. RESULTS: Serum values confirmed 25D3 deficiency and repletion of the 25D3-rescued group. Bacterial bioluminescence and neutrophil fluorescence were significantly greater (p < 0.05) in the 25D3-deficient group. CFU counts from the joint tissue and implant were also significantly greater in this group (p < 0.05). Rescue treatment significantly decreased bacterial burden and neutrophil infiltration (p < 0.05). Compared with the 25D3-sufficient and 25D3-rescued groups, MPO activity was higher (p < 0.02) and NAG activity was lower (p < 0.03) in the 25D3-deficient group. CONCLUSIONS: This study demonstrated in vivo in a mouse model of PJI that (1) 25D3 deficiency results in increased bacterial burden and neutrophil infiltration, and (2) this effect can be reversed with preoperative repletion of 25D3. CLINICAL RELEVANCE: Considering that >65% of patients undergoing arthroplasty have insufficient or low levels of total 25D and that 25D levels can be replenished with ease using a U.S. Food and Drug Administration (FDA)-approved, oral 25D3 product, 25D deficiency may be an important modifiable risk factor in humans undergoing joint replacement.


Asunto(s)
Suplementos Dietéticos , Prótesis de la Rodilla/efectos adversos , Infecciones Relacionadas con Prótesis/prevención & control , Infecciones Estafilocócicas/prevención & control , Deficiencia de Vitamina D/tratamiento farmacológico , Vitamina D/análogos & derivados , Vitaminas/uso terapéutico , Animales , Artroplastia de Reemplazo de Rodilla , Carga Bacteriana , Biomarcadores/sangre , Esquema de Medicación , Inyecciones Intraperitoneales , Masculino , Ratones , Infiltración Neutrófila , Cuidados Preoperatorios/métodos , Infecciones Relacionadas con Prótesis/etiología , Infecciones Relacionadas con Prótesis/microbiología , Distribución Aleatoria , Factores de Riesgo , Infecciones Estafilocócicas/etiología , Infecciones Estafilocócicas/microbiología , Vitamina D/sangre , Vitamina D/uso terapéutico , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/diagnóstico , Deficiencia de Vitamina D/microbiología
2.
J Orthop Res ; 35(1): 193-199, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27116085

RESUMEN

Post-operative spine infections are a challenge, as hardware must often be retained to prevent destabilization of the spine, and bacteria form biofilm on implants, rendering them inaccessible to antibiotic therapy, and immune cells. A model of posterior-approach spinal surgery was created in which a stainless steel k-wire was transfixed into the L4 spinous process of 12-week-old C57BL/six mice. Mice were then randomized to receive either one of three concentrations (1 × 102 , 1 × 103 , and 1 × 104 colony forming units (CFU)) of a bioluminescent strain of Staphylococcus aureus or normal saline at surgery. The mice were then longitudinally imaged for bacterial bioluminescence to quantify infection. The 1 × 102 CFU group had a decrease in signal down to control levels by POD 25, while the 1 × 103 and 1 × 104 CFU groups maintained a 10-fold higher signal through POD 35. Bacteria were then harvested from the pin and surrounding tissue for confirmatory CFU counts. All mice in the 1 × 104 CFU group experienced wound breakdown, while no mice in the other groups had this complication. Once an optimal bacterial concentration was determined, mice expressing enhanced green fluorescent protein in their myeloid cells (Lys-EGFP) were utilized to contemporaneously quantify bacterial burden, and immune response. Neutrophil fluorescence peaked for both groups on POD 3, and then declined. The infected group continued to have a response above the control group through POD 35. This study, establishes a noninvasive in vivo mouse model of spine implant infection that can quantify bacterial burden and host inflammation longitudinally in real time without requiring animal sacrifice. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:193-199, 2017.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones Relacionadas con Prótesis , Enfermedades de la Columna Vertebral , Animales , Mediciones Luminiscentes , Masculino , Ratones Endogámicos C57BL , Neutrófilos , Distribución Aleatoria , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...