Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Gastroenterol ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38088366

RESUMEN

INTRODUCTION: Cyclic vomiting syndrome (CVS) imposes a substantial burden, but epidemiological data are scarce. This study aimed to estimate the incidence and prevalence of CVS, comorbid conditions, and treatment patterns, using administrative databases in the United States. METHODS: This cross-sectional study used claims data from Merative MarketScan Commercial/Medicare Supplemental and Medicaid databases in all health care settings. Incidence and prevalence rates for 2019 were calculated and stratified by age, sex, region, and race/ethnicity. Patient characteristics were reported among newly diagnosed patients with CVS (i.e., no documented claims for CVS before 2019). CVS was defined as having 1+ inpatient and/or 2+ outpatient CVS claims that were 7+ days apart. RESULTS: The estimated prevalence of CVS was 16.7 (Commercial/Medicare) and 42.9 (Medicaid) per 100,000 individuals. The incidence of CVS was estimated to be 10.6 (Commercial/Medicare) and 26.6 (Medicaid) per 100,000 individuals. Both prevalence and incidence rates were higher among female individuals (for both Commercial/Medicare and Medicaid). Comorbid conditions were common and included abdominal pain (56%-64%), anxiety (32%-39%), depression (26%-34%), cardiac conditions (39%-42%), and gastroesophageal reflux disease (30%-40%). Despite a diagnosis of CVS, only 32%-35% had prescriptions for prophylactic treatment and 47%-55% for acute treatment within the first 30-day period following diagnosis. DISCUSSION: This study provides the first population-level estimates of CVS incidence and prevalence in the United States. Comorbid conditions are common, and most patients with CVS do not receive adequate treatment. These findings underscore the need for improving disease awareness and developing better screening strategies and effective treatments.

4.
Cell Mol Gastroenterol Hepatol ; 9(3): 507-526, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31778828

RESUMEN

BACKGROUND & AIMS: The mucus layer in the human colon protects against commensal bacteria and pathogens, and defects in its unique bilayered structure contribute to intestinal disorders, such as ulcerative colitis. However, our understanding of colon physiology is limited by the lack of in vitro models that replicate human colonic mucus layer structure and function. Here, we investigated if combining organ-on-a-chip and organoid technologies can be leveraged to develop a human-relevant in vitro model of colon mucus physiology. METHODS: A human colon-on-a-chip (Colon Chip) microfluidic device lined by primary patient-derived colonic epithelial cells was used to recapitulate mucus bilayer formation, and to visualize mucus accumulation in living cultures noninvasively. RESULTS: The Colon Chip supports spontaneous goblet cell differentiation and accumulation of a mucus bilayer with impenetrable and penetrable layers, and a thickness similar to that observed in the human colon, while maintaining a subpopulation of proliferative epithelial cells. Live imaging of the mucus layer formation on-chip showed that stimulation of the colonic epithelium with prostaglandin E2, which is increased during inflammation, causes rapid mucus volume expansion via an Na-K-Cl cotransporter 1 ion channel-dependent increase in its hydration state, but no increase in de novo mucus secretion. CONCLUSIONS: This study shows the production of colonic mucus with a physiologically relevant bilayer structure in vitro, which can be analyzed in real time noninvasively. The Colon Chip may offer a new preclinical tool to analyze the role of mucus in human intestinal homeostasis as well as diseases, such as ulcerative colitis and cancer.


Asunto(s)
Colon/metabolismo , Mucosa Intestinal/metabolismo , Dispositivos Laboratorio en un Chip , Moco/metabolismo , Células Cultivadas , Dinoprostona/metabolismo , Células Caliciformes/fisiología , Humanos , Organoides , Cultivo Primario de Células/métodos , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo
5.
Microbiome ; 7(1): 43, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30890187

RESUMEN

BACKGROUND: Species-specific differences in tolerance to infection are exemplified by the high susceptibility of humans to enterohemorrhagic Escherichia coli (EHEC) infection, whereas mice are relatively resistant to this pathogen. This intrinsic species-specific difference in EHEC infection limits the translation of murine research to human. Furthermore, studying the mechanisms underlying this differential susceptibility is a difficult problem due to complex in vivo interactions between the host, pathogen, and disparate commensal microbial communities. RESULTS: We utilize organ-on-a-chip (Organ Chip) microfluidic culture technology to model damage of the human colonic epithelium induced by EHEC infection, and show that epithelial injury is greater when exposed to metabolites derived from the human gut microbiome compared to mouse. Using a multi-omics approach, we discovered four human microbiome metabolites-4-methyl benzoic acid, 3,4-dimethylbenzoic acid, hexanoic acid, and heptanoic acid-that are sufficient to mediate this effect. The active human microbiome metabolites preferentially induce expression of flagellin, a bacterial protein associated with motility of EHEC and increased epithelial injury. Thus, the decreased tolerance to infection observed in humans versus other species may be due in part to the presence of compounds produced by the human intestinal microbiome that actively promote bacterial pathogenicity. CONCLUSION: Organ-on-chip technology allowed the identification of specific human microbiome metabolites modulating EHEC pathogenesis. These identified metabolites are sufficient to increase susceptibility to EHEC in our human Colon Chip model and they contribute to species-specific tolerance. This work suggests that higher concentrations of these metabolites could be the reason for higher susceptibility to EHEC infection in certain human populations, such as children. Furthermore, this research lays the foundation for therapeutic-modulation of microbe products in order to prevent and treat human bacterial infection.


Asunto(s)
Bacterias/metabolismo , Escherichia coli Enterohemorrágica/patogenicidad , Infecciones por Escherichia coli/patología , Intestinos/citología , Técnicas de Cultivo de Órganos/métodos , Animales , Benzoatos/farmacología , Caproatos/farmacología , Células Cultivadas , Escherichia coli Enterohemorrágica/metabolismo , Infecciones por Escherichia coli/microbiología , Femenino , Microbioma Gastrointestinal , Ácidos Heptanoicos/farmacología , Humanos , Intestinos/microbiología , Masculino , Ratones , Procedimientos Analíticos en Microchip , Especificidad de la Especie
6.
Mucosal Immunol ; 11(6): 1684-1693, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30111863

RESUMEN

Simultaneous analyses of peripheral and mucosal immune compartments can yield insight into the pathogenesis of mucosal-associated diseases. Although methods to preserve peripheral immune cells are well established, studies involving mucosal immune cells have been hampered by lack of simple storage techniques. We provide a cryopreservation protocol allowing for storage of gastrointestinal (GI) tissue with preservation of viability and functionality of both immune and epithelial cells. These methods will facilitate translational studies allowing for batch analysis of mucosal tissue to investigate disease pathogenesis, biomarker discovery and treatment responsiveness.


Asunto(s)
Criopreservación/métodos , Inmunofenotipificación/métodos , Mucosa Intestinal/inmunología , Intestinos/fisiología , Supervivencia Celular , Perfilación de la Expresión Génica , Humanos , Intestinos/patología
7.
Am J Hum Genet ; 103(1): 131-137, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29909964

RESUMEN

Homozygous nonsense mutations in WNT2B were identified in three individuals from two unrelated families with severe, neonatal-onset osmotic diarrhea after whole-exome sequencing was performed on trios from the two families. Intestinal biopsy samples from affected individuals were used for histology and immunofluorescence and to generate enteroids ex vivo. Histopathologic evaluation demonstrated chronic inflammatory changes in the stomach, duodenum, and colon. Immunofluorescence demonstrated diminished staining for OLFM4, a marker for intestinal stem cells (ISCs). The enteroids generated from WNT2B-deficient intestinal epithelium could not be expanded and did not survive passage. Addition of CHIR-99021 (a GSK3A and GSK3B inhibitor and activator of canonical WNT/ß-CATENIN signaling) could not rescue WNT2B-deficient enteroids. Addition of supplemental recombinant murine WNT2B was able to perpetuate small enteroids for multiple passages but failed to expand their number. Enteroids showed a 10-fold increase in the expression of LEF1 mRNA and a 100-fold reduction in TLR4 expression, compared with controls by quantitative RT-PCR, indicating alterations in canonical WNT and microbial pattern-recognition signaling. In summary, individuals with homozygous nonsense mutations in WNT2B demonstrate severe intestinal dysregulation associated with decreased ISC number and function, likely explaining their diarrheal phenotype. WNT2B deficiency should be considered for individuals with neonatal-onset diarrhea.


Asunto(s)
Codón sin Sentido/genética , Diarrea/genética , Glicoproteínas/genética , Proteínas Wnt/genética , Niño , Preescolar , Femenino , Homocigoto , Humanos , Lactante , Intestinos/patología , Masculino , ARN Mensajero/genética , Transducción de Señal/genética , Células Madre/patología
9.
Sci Rep ; 8(1): 2871, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440725

RESUMEN

Here we describe a method for fabricating a primary human Small Intestine-on-a-Chip (Intestine Chip) containing epithelial cells isolated from healthy regions of intestinal biopsies. The primary epithelial cells are expanded as 3D organoids, dissociated, and cultured on a porous membrane within a microfluidic device with human intestinal microvascular endothelium cultured in a parallel microchannel under flow and cyclic deformation. In the Intestine Chip, the epithelium forms villi-like projections lined by polarized epithelial cells that undergo multi-lineage differentiation similar to that of intestinal organoids, however, these cells expose their apical surfaces to an open lumen and interface with endothelium. Transcriptomic analysis also indicates that the Intestine Chip more closely mimics whole human duodenum in vivo when compared to the duodenal organoids used to create the chips. Because fluids flowing through the lumen of the Intestine Chip can be collected continuously, sequential analysis of fluid samples can be used to quantify nutrient digestion, mucus secretion and establishment of intestinal barrier function over a period of multiple days in vitro. The Intestine Chip therefore may be useful as a research tool for applications where normal intestinal function is crucial, including studies of metabolism, nutrition, infection, and drug pharmacokinetics, as well as personalized medicine.


Asunto(s)
Intestino Delgado/citología , Dispositivos Laboratorio en un Chip , Organoides/citología , Biopsia , Proliferación Celular , Células Epiteliales/citología , Humanos
10.
Stem Cell Reports ; 10(1): 17-26, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29276155

RESUMEN

The intestinal epithelium serves as an essential barrier to the outside world and is maintained by functionally distinct populations of rapidly cycling intestinal stem cells (CBC ISCs) and slowly cycling, reserve ISCs (r-ISCs). Because disruptions in the epithelial barrier can result from pathological activation of the immune system, we sought to investigate the impact of inflammation on ISC behavior during the regenerative response. In a murine model of αCD3 antibody-induced small-intestinal inflammation, r-ISCs proved highly resistant to injury, while CBC ISCs underwent apoptosis. Moreover, r-ISCs were induced to proliferate and functionally contribute to intestinal regeneration. Further analysis revealed that the inflammatory cytokines interferon gamma and tumor necrosis factor alpha led to r-ISC activation in enteroid culture, which could be blocked by the JAK/STAT inhibitor, tofacitinib. These results highlight an important role for r-ISCs in response to acute intestinal inflammation and show that JAK/STAT-1 signaling is required for the r-ISC regenerative response.


Asunto(s)
Enteritis/metabolismo , Mucosa Intestinal/fisiología , Intestino Delgado/metabolismo , Quinasas Janus/metabolismo , Regeneración , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Células Madre/metabolismo , Enfermedad Aguda , Animales , Apoptosis/efectos de los fármacos , Citocinas/metabolismo , Enteritis/inducido químicamente , Enteritis/patología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Mucosa Intestinal/patología , Intestino Delgado/patología , Quinasas Janus/antagonistas & inhibidores , Ratones , Ratones Transgénicos , Piperidinas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Factor de Transcripción STAT1/antagonistas & inhibidores , Células Madre/patología
11.
Dev Dyn ; 245(7): 718-26, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27153394

RESUMEN

The intestine's ability to recover from catastrophic injury requires quiescent intestinal stem cells (q-ISCs). While rapidly cycling (Lgr5+) crypt base columnar (CBC) ISCs normally maintain the intestine, they are highly sensitive to pathological injuries (irradiation, inflammation) and must be restored by q-ISCs to sustain intestinal homeostasis. Despite clear relevance to human health, virtually nothing is known regarding the factors that regulate q-ISCs. A comprehensive understanding of these mechanisms would likely lead to targeted new therapies with profound therapeutic implications for patients with gastrointestinal conditions. We briefly review the current state of the literature, highlighting homeostatic mechanisms important for q-ISC regulation, listing key questions in the field, and offer strategies to address them. Developmental Dynamics 245:718-726, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Mucosa Intestinal/metabolismo , Intestinos/citología , Células Madre/citología , Células Madre/metabolismo , Animales , Homeostasis/genética , Homeostasis/fisiología , Humanos , Modelos Biológicos , Transducción de Señal , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología
12.
Cell Stem Cell ; 18(3): 410-21, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26908146

RESUMEN

The gastrointestinal (GI) epithelium is a highly regenerative tissue with the potential to provide a renewable source of insulin(+) cells after undergoing cellular reprogramming. Here, we show that cells of the antral stomach have a previously unappreciated propensity for conversion into functional insulin-secreting cells. Native antral endocrine cells share a surprising degree of transcriptional similarity with pancreatic ß cells, and expression of ß cell reprogramming factors in vivo converts antral cells efficiently into insulin(+) cells with close molecular and functional similarity to ß cells. Induced GI insulin(+) cells can suppress hyperglycemia in a diabetic mouse model for at least 6 months and regenerate rapidly after ablation. Reprogramming of antral stomach cells assembled into bioengineered mini-organs in vitro yielded transplantable units that also suppressed hyperglycemia in diabetic mice, highlighting the potential for development of engineered stomach tissues as a renewable source of functional ß cells for glycemic control.


Asunto(s)
Técnicas de Reprogramación Celular , Reprogramación Celular , Mucosa Gástrica/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Mucosa Gástrica/citología , Mucosa Gástrica/trasplante , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/trasplante , Ratones
13.
J Physiol ; 594(17): 4805-13, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-26670741

RESUMEN

Long-lived and self-renewing adult stem cells (SCs) are essential for homeostasis in a wide range of tissues and can include both rapidly cycling and quiescent (q)SC populations. Rapidly cycling SCs function principally during normal tissue maintenance and are highly sensitive to stress, whereas qSCs exit from their quiescent state in response to homeostatic imbalance and regenerative pressure. The regulatory mechanisms underlying the quiescent state include factors essential for cell cycle control, stress response and survival pathways, developmental signalling pathways, and post-transcriptional modulation. Here, we review these regulatory mechanisms citing observations from the intestine and other self-renewing tissues.


Asunto(s)
Células Madre Adultas/fisiología , Intestinos/citología , Animales , Autofagia , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Proteínas de Unión al ADN/fisiología , Fosfohidrolasa PTEN/fisiología , Proteínas Quinasas/fisiología
14.
Cell Rep ; 13(11): 2403-2411, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26686631

RESUMEN

The cellular and molecular mechanisms underlying adaptive changes to physiological stress within the intestinal epithelium remain poorly understood. Here, we show that PTEN, a negative regulator of the PI3K→AKT→mTORC1-signaling pathway, is an important regulator of dormant intestinal stem cells (d-ISCs). Acute nutrient deprivation leads to transient PTEN phosphorylation within d-ISCs and a corresponding increase in their number. This release of PTEN inhibition renders d-ISCs functionally poised to contribute to the regenerative response during re-feeding via cell-autonomous activation of the PI3K→AKT→mTORC1 pathway. Consistent with its role in mediating cell survival, PTEN is required for d-ISC maintenance at baseline, and intestines lacking PTEN have diminished regenerative capacity after irradiation. Our results highlight a PTEN-dependent mechanism for d-ISC maintenance and further demonstrate the role of d-ISCs in the intestinal response to stress.


Asunto(s)
Intestinos/citología , Estado Nutricional , Fosfohidrolasa PTEN/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Proliferación Celular , Femenino , Genes Reporteros , Intestinos/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Complejos Multiproteicos/metabolismo , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Telomerasa/genética , Telomerasa/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(1): 179-84, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173232

RESUMEN

The intestinal epithelium is maintained by a population of rapidly cycling (Lgr5(+)) intestinal stem cells (ISCs). It has been postulated, however, that slowly cycling ISCs must also be present in the intestine to protect the genome from accumulating deleterious mutations and to allow for a response to tissue injury. Here, we identify a subpopulation of slowly cycling ISCs marked by mouse telomerase reverse transcriptase (mTert) expression that can give rise to Lgr5(+) cells. mTert-expressing cells distribute in a pattern along the crypt-villus axis similar to long-term label-retaining cells (LRCs) and are resistant to tissue injury. Lineage-tracing studies demonstrate that mTert(+) cells give rise to all differentiated intestinal cell types, persist long term, and contribute to the regenerative response following injury. Consistent with other highly regenerative tissues, our results demonstrate that a slowly cycling stem cell population exists within the intestine.


Asunto(s)
Mucosa Intestinal/citología , Células Madre Multipotentes/metabolismo , Telomerasa/metabolismo , Animales , Linaje de la Célula/fisiología , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Ratones , Microscopía Fluorescente , Células Madre Multipotentes/citología , Receptores Acoplados a Proteínas G/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
J Grad Med Educ ; 3(3): 315-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22942955

RESUMEN

BACKGROUND: Hospital quality improvement initiatives are becoming increasingly common. Little is known about the influence of these initiatives on resident learning and attitudes. Our objective was to assess whether training in a hospital committed to involving residents in hospital-initiated, continuous quality improvement (CQI), and to participation in such activities, would influence residents' attitudes toward CQI and engagement in the hospital community. METHODS: We surveyed Seattle Children's Hospital pediatric residents, from residency graduation years 2002-2009. We included questions about participation in quality improvement activities during residency and measures of attitude toward CQI and of workplace engagement. We used descriptive statistics to assess trends in resident participation in hospital CQI activities, attitudes toward CQI and workplace engagement. RESULTS: The overall response rate was 84% (162 of 194). Among graduated residents, there was a significant trend toward increased participation in CQI activities (P  =  .03). We found no difference in attitude toward CQI between those who had and those who had not participated in such activities nor between residents who began training before and those who began after the hospital formally committed to CQI. Sixty-three percent of residents (25 of 40) who participated in CQI activities were engaged in the hospital community compared with 53% (57 of 107) who did not participate in CQI activities (P  =  .21). CONCLUSIONS: Training in a hospital committed to involving residents in CQI was associated with a high rate of participation in CQI activities. Although such training and participation in CQI were not associated with resident attitudes toward CQI or hospital engagement, it may allow residents to learn skills for practice-based learning and improvement and systems-based practice.

17.
Prog Mol Biol Transl Sci ; 96: 207-29, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21075346

RESUMEN

Regulation of gene expression within the intestinal epithelium is complex and controlled by various signaling pathways that regulate the balance between proliferation and differentiation. Proliferation is required both to grow and to replace cells lost through apoptosis and attrition, yet in all but a few cells, differentiation must take place to prevent uncontrolled growth (cancer) and to provide essential functions. In this chapter, we review the major signaling pathways underlying regulation of gene expression within the intestinal epithelium, based primarily on data from mouse models, as well as specific morphogens and transcription factor families that have a major role in regulating intestinal gene expression, including the Hedgehog family, Forkhead Box (FOX) factors, Homeobox (HOX) genes, ParaHox genes, GATA transcription factors, canonical Wnt/ß-catenin signaling, EPH/Ephrins, Sox9, BMP signaling, PTEN/PI3K, LKB1, K-RAS, Notch pathway, HNF, and MATH1. We also briefly highlight important emerging areas of gene regulation, including microRNA (miRNA) and epigenetic regulation.


Asunto(s)
Regulación de la Expresión Génica , Mucosa Intestinal/metabolismo , Animales , Humanos , Transducción de Señal/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...