Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 146: 283-297, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969457

RESUMEN

The Arctic, an essential ecosystem on Earth, is subject to pronounced anthropogenic pressures, most notable being the climate change and risks of crude oil pollution. As crucial elements of Arctic environments, benthic microbiomes are involved in climate-relevant biogeochemical cycles and hold the potential to remediate upcoming contamination. Yet, the Arctic benthic microbiomes are among the least explored biomes on the planet. Here we combined geochemical analyses, incubation experiments, and microbial community profiling to detail the biogeography and biodegradation potential of Arctic sedimentary microbiomes in the northern Barents Sea. The results revealed a predominance of bacterial and archaea phyla typically found in the deep marine biosphere, such as Chloroflexi, Atribacteria, and Bathyarcheaota. The topmost benthic communities were spatially structured by sedimentary organic carbon, lacking a clear distinction among geographic regions. With increasing sediment depth, the community structure exhibited stratigraphic variability that could be correlated to redox geochemistry of sediments. The benthic microbiomes harbored multiple taxa capable of oxidizing hydrocarbons using aerobic and anaerobic pathways. Incubation of surface sediments with crude oil led to proliferation of several genera from the so-called rare biosphere. These include Alkalimarinus and Halioglobus, previously unrecognized as hydrocarbon-degrading genera, both harboring the full genetic potential for aerobic alkane oxidation. These findings increase our understanding of the taxonomic inventory and functional potential of unstudied benthic microbiomes in the Arctic.


Asunto(s)
Biodegradación Ambiental , Sedimentos Geológicos , Microbiota , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Regiones Árticas , Petróleo/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Archaea/metabolismo , Archaea/clasificación , Archaea/genética , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Biodiversidad
2.
J Environ Sci (China) ; 146: 298-303, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969458

RESUMEN

Antibiotics, their transformation products, and the translocation of antibiotic-resistant genes in the environment pose significant health risks to humans, animals, and ecosystems, aligning with the One Health concept. Constructed wetlands hold substantial yet underutilized potential for treating wastewater from agricultural, domestic sewage, or contaminated effluents from wastewater treatment plants, with the goal of eliminating antibiotics. However, the comprehensive understanding of the distribution, persistence, and dissipation processes of antibiotics within constructed wetlands remains largely unexplored. In this context, we provide an overview of the current application of stable isotope analysis at natural abundance to antibiotics. We explore the opportunities of an advanced multiple stable isotope approach, where isotope concepts could be effectively applied to examine the fate of antibiotics in wetlands. The development of a conceptual framework to study antibiotics in wetlands using multi-element stable isotopes introduces a new paradigm, offering enhanced insights into the identification and quantification of natural attenuation of antibiotics within wetland systems. This perspective has the potential to inspire the general public, governmental bodies, and the broader research community, fostering an emphasis on the utilization of stable isotope analysis for studying antibiotics and other emerging micropollutants in wetland systems.


Asunto(s)
Antibacterianos , Monitoreo del Ambiente , Contaminantes Químicos del Agua , Humedales , Antibacterianos/análisis , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Isótopos/análisis
3.
J Environ Manage ; 366: 121893, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39025004

RESUMEN

This study aims to identify sources of groundwater contamination in a refinery area using integrated compound-specific stable isotope analysis (CSIA), oil fingerprinting techniques, hydrogeological data, and distillation analysis. The investigations focused on determination of the origin of benzene, toluene, ethylbenzene, and xylenes (BTEX), and aliphatic hydrocarbons as well. Groundwater and floating oil samples were collected from extraction wells for analysis. Results indicate presence of active leaks in both the northern and southern zones. In the northern zone, toluene was found to primarily originate from oil products like aviation turbine kerosene (ATK or aviation fuel), kerosene, regular gasoline, and diesel fuel. Additionally, stable isotope ratios of carbon and hydrogen for ethylbenzene, o-xylene (ortho xylene) and p-xylene (para xylene) in zone A suggested the pollution originated from gasoline within the northern zone. The origin of super gasoline (with higher octane) identified in southern zone using δ13C and δ2H values of toluene in the floating oil and groundwater samples. Further, biodegradation of toluene likely occurred in southern zone according to δ13C and δ2H. The findings underscore the critical importance of integrating CSIA and fingerprinting techniques to effectively address the challenges of source identification and relying solely on each method independently is insufficient. Accordingly, comparing the GC-MS results of floating oil samples with ATK and jet fuel (JP4) standards can be effectively utilized for source differentiation. However, this method showed no practical application to distinguish different types of diesel or gasoline. The accuracy and reliability of source identification of BTEX compounds may significantly improve when hydrogeological data incorporates with stable isotopes analysis. Additionally, the results of this study will elevate the procedures for fuel-related contaminants source identification of the polluted groundwater that is crucial to develop effective remediation strategies.


Asunto(s)
Benceno , Agua Subterránea , Tolueno , Contaminantes Químicos del Agua , Xilenos , Agua Subterránea/química , Xilenos/análisis , Benceno/análisis , Tolueno/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Derivados del Benceno/análisis
4.
Environ Sci Technol ; 58(23): 10322-10333, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38822809

RESUMEN

The antibiotic sulfamethoxazole (SMX) undergoes direct phototransformation by sunlight, constituting a notable dissipation process in the environment. SMX exists in both neutral and anionic forms, depending on the pH conditions. To discern the direct photodegradation of SMX at various pH levels and differentiate it from other transformation processes, we conducted phototransformation of SMX under simulated sunlight at pH 7 and 3, employing both transformation product (TP) and compound-specific stable isotope analyses. At pH 7, the primary TPs were sulfanilic acid and 3A5MI, followed by sulfanilamide and (5-methylisoxazol-3-yl)-sulfamate, whereas at pH 3, a photoisomer was the dominant product, followed by sulfanilic acid and 3A5MI. Isotope fractionation patterns revealed normal 13C, 34S, and inverse 15N isotope fractionation, which exhibited significant differences between pH 7 and 3. This indicates a pH-dependent transformation process in SMX direct phototransformation. The hydrogen isotopic composition of SMX remained stable during direct phototransformation at both pH levels. Moreover, there was no variation observed in 33S between the two pH levels, indicating that the 33S mass-independent process remains unaffected by changes in pH. The analysis of main TPs and single-element isotopic fractionation suggests varying combinations of bond cleavages at different pH values, resulting in distinct patterns of isotopic fractionation. Conversely, dual-element isotope values at different pH levels did not significantly differ, indicating cleavage of several bonds in parallel. Hence, prudent interpretation of dual-element isotope analysis in these systems is warranted. These findings highlight the potential of multielement compound-specific isotope analysis in characterizing pH-dependent direct phototransformation of SMX, thereby facilitating the evaluation of its natural attenuation through sunlight photolysis in the environment.


Asunto(s)
Sulfametoxazol , Sulfametoxazol/química , Concentración de Iones de Hidrógeno , Luz Solar , Fotólisis
5.
Isotopes Environ Health Stud ; 60(2): 103-121, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38344763

RESUMEN

The biogeochemical consequences of dihydrogen (H2) underground storage in porous aquifers are poorly understood. Here, the effects of nutrient limitations on anaerobic H2 oxidation of an aquifer microbial community in sediment microcosms were determined in order to evaluate possible responses to high H2 partial pressures. Hydrogen isotope analyses of H2 yielded isotope depletion in all biotic setups indicating microbial H2 consumption. Carbon isotope analyses of carbon dioxide (CO2) showed isotope enrichment in all H2-supplemented biotic setups indicating H2-dependent consumption of CO2 by methanogens or homoacetogens. Homoacetogenesis was indicated by the detection of acetate and formate. Consumption of CO2 and H2 varied along the differently nutrient-amended setups, as did the onset of methane production. Plotting carbon against hydrogen isotope signatures of CH4 indicated that CH4 was produced hydrogenotrophically and fermentatively. The putative hydrogenotrophic Methanobacterium sp. was the dominant methanogen. Most abundant phylotypes belonged to typical ferric iron reducers, indicating that besides CO2, Fe(III) was an important electron acceptor. In summary, our study provides evidence for the adaptability of subsurface microbial communities under different nutrient-deficient conditions to elevated H2 partial pressures.


Asunto(s)
Agua Subterránea , Microbiota , Anaerobiosis , Metano/análisis , Dióxido de Carbono , Compuestos Férricos , Isótopos de Carbono/análisis , Hidrógeno
6.
Environ Sci Ecotechnol ; 20: 100371, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38283867

RESUMEN

At the sediment-water interfaces, filamentous cable bacteria transport electrons from sulfide oxidation along their filaments towards oxygen or nitrate as electron acceptors. These multicellular bacteria belonging to the family Desulfobulbaceae thus form a biogeobattery that mediates redox processes between multiple elements. Cable bacteria were first reported in 2012. In the past years, cable bacteria have been found to be widely distributed across the globe. Their potential in shaping the surface water environments has been extensively studied but is not fully elucidated. In this review, the biogeochemical characteristics, conduction mechanisms, and geographical distribution of cable bacteria, as well as their ecological effects, are systematically reviewed and discussed. Novel insights for understanding and applying the role of cable bacteria in aquatic ecology are summarized.

7.
Environ Sci Technol ; 58(5): 2346-2359, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38267392

RESUMEN

Ecological role of the viral community on the fate of antibiotic resistance genes (ARGs) (reduction vs proliferation) remains unclear in anaerobic digestion (AD). Metagenomics revealed a dominance of Siphoviridae and Podoviridae among 13,895 identified viral operational taxonomic units (vOTUs) within AD, and only 21 of the vOTUs carried ARGs, which only accounted for 0.57 ± 0.43% of AD antibiotic resistome. Conversely, ARGs locating on plasmids and integrative and conjugative elements accounted for above 61.0%, indicating a substantial potential for conjugation in driving horizontal gene transfer of ARGs within AD. Virus-host prediction based on CRISPR spacer, tRNA, and homology matches indicated that most viruses (80.2%) could not infect across genera. Among 480 high-quality metagenome assembly genomes, 95 carried ARGs and were considered as putative antibiotic-resistant bacteria (pARB). Furthermore, lytic phages of 66 pARBs were identified and devoid of ARGs, and virus/host abundance ratios with an average value of 71.7 indicated extensive viral activity and lysis. The infectivity of lytic phage was also elucidated through laboratory experiments concerning changes of the phage-to-host ratio, pH, and temperature. Although metagenomic evidence for dissemination of ARGs by phage transduction was found, the higher proportion of lytic phages infecting pARBs suggested that the viral community played a greater role in reducing ARB numbers than spreading ARGs in AD.


Asunto(s)
Antibacterianos , Bacteriófagos , Antibacterianos/farmacología , Anaerobiosis , Antagonistas de Receptores de Angiotensina , Genes Bacterianos , Inhibidores de la Enzima Convertidora de Angiotensina , Bacterias/genética , Farmacorresistencia Microbiana/genética , Bacteriófagos/genética , Metagenómica
8.
PLoS One ; 18(11): e0294203, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37922275

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0242247.].

9.
Front Microbiol ; 14: 1250308, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37817750

RESUMEN

Multi element compound-specific stable isotope analysis (ME-CSIA) is a tool to assess (bio)chemical reactions of molecules in the environment based on their isotopic fingerprints. To that effect, ME-CSIA concepts are initially developed with laboratory model experiments to determine the isotope fractionation factors specific for distinct (bio)chemical reactions. Here, we determined for the first time the carbon and hydrogen isotope fractionation factors for the monooxygenation of the short-chain alkanes ethane, propane, and butane. As model organism we used Thauera butanivorans strain Bu-B1211 which employs a non-haem iron monooxygenase (butane monooxygenase) to activate alkanes. Monooxygenation of alkanes was associated with strong carbon and hydrogen isotope effects: εbulkC = -2.95 ± 0.5 ‰ for ethane, -2.68 ± 0.1 ‰ for propane, -1.19 ± 0.18 ‰ for butane; εbulkH = -56.3 ± 15 ‰ for ethane, -40.5 ± 2.3 ‰ for propane, -14.6 ± 3.6 ‰ for butane. This resulted in lambda (Λ ≈ εHbulk/εCbulk) values of 16.2 ± 3.7 for ethane, 13.2 ± 0.7 for propane, and 11.4 ± 2.8 for butane. The results show that ME-CSIA can be used to track the occurrence and impact of monooxygenase-dependent aerobic processes converting short-chain alkanes in natural settings like marine and terrestrial seeps, gas reservoirs, and other geological formations impacted by natural gas.

10.
Anal Chem ; 95(44): 16272-16278, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37878670

RESUMEN

Determination of stable hydrogen isotopic compositions (δ2H) is currently challenged to achieve a high detection limit for reaching the linear range where δ2H values are independent of concentration. Therefore, it is difficult to assess precise δ2H values for calculating the hydrogen isotope enrichment factor (εH) and for field application where the concentrations of contaminants are relatively low. In this study, a data treatment approach was developed to obtain accurate δ2H values below the linear range. The core concept was to use a logarithmic function to fit the δ2H values below the linear range and then adjust the δ2H values below the linear range into the linear range by using the fitted logarithmic equation. Moreover, the adjusted δ2H values were calibrated by using laboratory reference materials, e.g., n-alkanes. Tris(2-chloroethyl) phosphate (TCEP) and hexachlorocyclohexane (HCH) isomers were selected as examples of complex heteroatom-bearing compounds to develop the data treatment approach. This data treatment approach was then tested using δ2H values from a TCEP transformation experiment with OH radicals. Comparable δ2H values and εH between the low-concentration experiment and the reference experiment were obtained using the developed approach. Therefore, the developed data treatment approach enables a possibility of determining the hydrogen isotopic compositions of organic components in low concentrations. It is especially valuable for determining organic contaminants in environmental samples, which are usually present in low concentrations.

11.
Front Microbiol ; 14: 1252870, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731921

RESUMEN

The spread of bacteria with antibiotic resistance genes (ARGs) in aquatic ecosystems is of growing concern as this can pose a risk of transmission to humans and animals. While the impact of wastewater treatment plant (WWTP) effluent on ARG abundance in surface waters has been studied extensively, less is known about the fate of ARGs in biofilms. The proximity and dense growth of microorganisms in combination with the accumulation of higher antibiotic concentrations in biofilms might render biofilms a reservoir for ARGs. Seasonal parameters such as water temperature, precipitation, and antibiotic concentrations should be considered as well, as they may further influence the fate of ARGs in aquatic ecosystems. Here we investigated the effect of WWTP effluent on the abundance of the sulfonamide resistance genes sul1 and sul2, and the integrase gene intI1 in biofilm and surface water compartments of a river in Germany with a gradient of anthropogenic impact using quantitative PCR. Furthermore, we analyzed the bacterial community structure in both compartments via 16S rRNA gene amplicon sequencing, following the river downstream. Additionally, conventional water parameters and sulfonamide concentrations were measured, and seasonal aspects were considered by comparing the fate of ARGs and bacterial community diversity in the surface water compartment between the summer and winter season. Our results show that biofilm compartments near the WWTP had a higher relative abundance of ARGs (up to 4.7%) than surface waters (<2.8%). Sulfonamide resistance genes were more persistent further downstream (>10 km) of the WWTP in the hot and dry summer season than in winter. This finding is likely a consequence of the higher proportion of wastewater and thus wastewater-derived microorganisms in the river during summer periods. We observed distinct bacterial communities and ARG abundance between the biofilm and surface water compartment, but even greater variations when considering seasonal and spatiotemporal parameters. This underscores the need to consider seasonal aspects when studying the fate of ARGs in aquatic ecosystems.

12.
Plant Methods ; 19(1): 71, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452400

RESUMEN

BACKGROUND: Investigations into the growth and self-organization of plant roots is subject to fundamental and applied research in various areas such as botany, agriculture, and soil science. The growth activity of the plant tissue can be investigated by isotope labeling experiments with heavy water and subsequent detection of the deuterium in non-exchangeable positions incorporated into the plant biomass. Commonly used analytical methods to detect deuterium in plants are based on mass-spectrometry or neutron-scattering and they either suffer from elaborated sample preparation, destruction of the sample during analysis, or low spatial resolution. Confocal Raman micro-spectroscopy (CRM) can be considered a promising method to overcome the aforementioned challenges. The substitution of hydrogen with deuterium results in the measurable shift of the CH-related Raman bands. By employing correlative approaches with a high-resolution technique, such as helium ion microscopy (HIM), additional structural information can be added to CRM isotope maps and spatial resolution can be further increased. For that, it is necessary to develop a comprehensive workflow from sample preparation to data processing. RESULTS: A workflow to prepare and analyze roots of hydroponically grown and deuterium labeled Zea mays by correlative HIM-CRM micro-analysis was developed. The accuracy and linearity of deuterium detection by CRM were tested and confirmed with samples of deuterated glucose. A set of root samples taken from deuterated Zea mays in a time-series experiment was used to test the entire workflow. The deuterium content in the roots measured by CRM was close to the values obtained by isotope-ratio mass spectrometry. As expected, root tips being the most actively growing root zone had incorporated the highest amount of deuterium which increased with increasing time of labeling. Furthermore, correlative HIM-CRM analysis allowed for obtaining the spatial distribution pattern of deuterium and lignin in root cross-sections. Here, more active root zones with higher deuterium incorporation showed less lignification. CONCLUSIONS: We demonstrated that CRM in combination with deuterium labeling can be an alternative and reliable tool for the analysis of plant growth. This approach together with the developed workflow has the potential to be extended to complex systems such as plant roots grown in soil.

14.
Environ Sci Technol ; 57(23): 8776-8784, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37267390

RESUMEN

The potential transformation of hexachlorocyclohexane isomers (HCHs) within tree trunks could have a significant impact on the use of phytoscreening. However, the transformation mechanisms of HCH in trunks particularly in growth rings are not yet well understood. Therefore, a field study on an HCH-contaminated field site was conducted to investigate the fate of HCH, particularly α-HCH in tree trunks using multielement compound-specific isotope analysis (ME-CSIA) and enantiomer fractionation. The results indicate that α-HCH was transformed, as evidenced by higher δ13C and δ37Cl values detected across different growth ring sections and in the bark compared to those in muck and soil. Remarkably, in the middle growth ring section, δ13C values of HCH were only marginally higher or comparable to those in muck, whereas δ37Cl values were higher than those of the muck, indicating a different transformation mechanism. Moreover, the δ37Cl values of ß-HCH also increased in the tree trunks compared to those in soil and muck, implying a transformation of ß-HCH. Additionally, dual-element isotope analysis revealed that there are different transformation mechanisms between the middle growth rings and other sections. Our findings suggest that the transformation of HCHs in trunks could bias quantitative phytoscreening approaches; however, ME-CISA offers an option to estimate the degradation extent.


Asunto(s)
Hexaclorociclohexano , Árboles , Isótopos de Carbono/análisis , Biodegradación Ambiental , Suelo
15.
Front Microbiol ; 14: 1058350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36760511

RESUMEN

Introduction: Currently there are sparse regulations regarding the discharge of antibiotics from wastewater treatment plants (WWTP) into river systems, making surface waters a latent reservoir for antibiotics and antibiotic resistance genes (ARGs). To better understand factors that influence the fate of ARGs in the environment and to foster surveillance of antibiotic resistance spreading in such habitats, several indicator genes have been proposed, including the integrase gene intI1 and the sulfonamide resistance genes sul1 and sul2. Methods: Here we used quantitative PCR and long-read nanopore sequencing to monitor the abundance of these indicator genes and ARGs present as class 1 integron gene cassettes in a river system from pristine source to WWTP-impacted water. ARG abundance was compared with the dynamics of the microbial communities determined via 16S rRNA gene amplicon sequencing, conventional water parameters and the concentration of sulfamethoxazole (SMX), sulfamethazine (SMZ) and sulfadiazine (SDZ). Results: Our results show that WWTP effluent was the principal source of all three sulfonamides with highest concentrations for SMX (median 8.6 ng/l), and of the indicator genes sul1, sul2 and intI1 with median relative abundance to 16S rRNA gene of 0.55, 0.77 and 0.65%, respectively. Downstream from the WWTP, water quality improved constantly, including lower sulfonamide concentrations, decreasing abundances of sul1 and sul2 and lower numbers and diversity of ARGs in the class 1 integron. The riverine microbial community partially recovered after receiving WWTP effluent, which was consolidated by a microbiome recovery model. Surprisingly, the relative abundance of intI1 increased 3-fold over 13 km of the river stretch, suggesting an internal gene multiplication. Discussion: We found no evidence that low amounts of sulfonamides in the aquatic environment stimulate the maintenance or even spread of corresponding ARGs. Nevertheless, class 1 integrons carrying various ARGs were still present 13 km downstream from the WWTP. Therefore, limiting the release of ARG-harboring microorganisms may be more crucial for restricting the environmental spread of antimicrobial resistance than attenuating ng/L concentrations of antibiotics.

16.
Environ Sci Technol ; 57(5): 1930-1939, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36689325

RESUMEN

The photosensitized transformation of organic chemicals is an important degradation mechanism in natural surface waters, aerosols, and water films on surfaces. Dissolved organic matter including humic-like substances (HS), acting as photosensitizers that participate in electron transfer reactions, can generate a variety of reactive species, such as OH radicals and excited triplet-state HS (3HS*), which promote the degradation of organic compounds. We use phthalate esters, which are important contaminants found in wastewaters, landfills, soils, rivers, lakes, groundwaters, and mine tailings. We use phthalate esters as probes to study the reactivity of HS irradiated with artificial sunlight. Phthalate esters with different side-chain lengths were used as probes for elucidation of reaction mechanisms using 2H and 13C isotope fractionation. Reference experiments with the artificial photosensitizers 4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein (Rose Bengal), 3-methoxy-acetophenone (3-MAP), and 4-methoxybenzaldehyde (4-MBA) yielded characteristic fractionation factors (-4 ± 1, -4 ± 2, and -4 ± 1‰ for 2H; 0.7 ± 0.2, 1.0 ± 0.4, and 0.8 ± 0.2‰ for 13C), allowing interpretation of reaction mechanisms of humic substances with phthalate esters. The correlation of 2H and 13C fractions can be used diagnostically to determine photosensitized reactions in the environment and to differentiate among biodegradation, hydrolysis, and photosensitized HS reaction.


Asunto(s)
Sustancias Húmicas , Contaminantes Químicos del Agua , Sustancias Húmicas/análisis , Ésteres , Fármacos Fotosensibilizantes , Isótopos de Carbono , Contaminantes Químicos del Agua/análisis , Fotólisis
17.
Water Res ; 247: 120740, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39492359

RESUMEN

The hydrogen and carbon isotope fractionation factor (ε2H, ε13C) of dimethyl-, diethyl­ and dibutyl phthalic acid ester during photosensitized degradation by artificial sunlight with Fe(III) ions and iron minerals (hematite, goethite and magnetite) in aqueous solution were examined by compound-specific isotope analysis (CSIA) in order to analyze the degradation mechanism. Hematite does not catalyze photosensitized degradation of phthalates. The correlation of 2H and 13C isotope fractionation (Λ = Δδ2H/Δδ13C) of phthalates with increasing chain length (dimethyl-; diethyl­; and dibutyl-) were compared with values of the ∙OH radical model reaction with the aromatic ring as well as acidic and alkaline hydrolysis. The Λ values of die photosensitized reaction of diethyl phthalate with goethite (-5.1 ± 1.8) and magnetite (-18.9 ± 3.9) show a large difference compared to Fe(III) solutions (4.7 ± 0.9 to 4.8 ± 1.0) suggesting specific reaction mechanisms. The fractionation factors determined here have potential to characterize the degradation of phthalates catalyzed by photo-induced reaction of Fe(III), goethite and magnetite in natural system and in remediation approaches.

18.
Chemosphere ; 307(Pt 4): 135892, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35987264

RESUMEN

In this study compound-specific isotope analysis (CSIA) has been used to explore the degradation mechanism of nano titanium dioxide (TiO2) catalyzes photodegradation of diethyl phthalate (DEP). TiO2 is a popular photosensitizer with potential in waste water treatment and application in advanced oxidation processes. The degradation process of DEP can be described with a first-order kinetics in the applied concentration ranges. The larger degradation rate constant has been found at neutral conditions. The 13C and 2H isotope fractionation associated with the nano TiO2 catalyzes photodegradation of DEP at pH 3, 7 and 11 yield normal isotope effects. In the TiO2/UV/DEP and TiO2/H2O2/UV/DEP systems, the correlation of 13C and 2H fractionation (Λ) were calculated to be 2.7 ± 0.2, 2.8 ± 0.2 at pH 3, 2.2 ± 0.4, 2.5 ± 0.2, 2.3 ± 0.6 at pH 7 and 2.6 ± 0.3, 2.2 ± 0.3, 2.7 ± 0.2 and 2.3 ± 0.3 at pH11, respectively. The dominant free radical species in studied systems were explored by combining free radical quenching method and electron paramagnetic resonance analysis. The hydroxyl radicals have been found as the main radical species at all pH conditions studied. Furthermore, the 13C and 2H fractionation suggested that the addition of •OH on the benzene ring of DEP is the main conversion pathway. Therefore, CSIA is a promising technology for the identification of reaction pathways of DEP for example in water treatment systems.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Benceno/análisis , Peróxido de Hidrógeno/química , Isótopos/análisis , Fármacos Fotosensibilizantes , Ácidos Ftálicos , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
19.
Nat Commun ; 13(1): 3998, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810180

RESUMEN

Basic processes of the fatty acid metabolism have an important impact on the function of intestinal epithelial cells (IEC). However, while the role of cellular fatty acid oxidation is well appreciated, it is not clear how de novo fatty acid synthesis (FAS) influences the biology of IECs. We report here that interfering with de novo FAS by deletion of the enzyme Acetyl-CoA-Carboxylase (ACC)1 in IECs results in the loss of epithelial crypt structures and a specific decline in Lgr5+ intestinal epithelial stem cells (ISC). Mechanistically, ACC1-mediated de novo FAS supports the formation of intestinal organoids and the differentiation of complex crypt structures by sustaining the nuclear accumulation of PPARδ/ß-catenin in ISCs. The dependency of ISCs on cellular de novo FAS is tuned by the availability of environmental lipids, as an excess delivery of external fatty acids is sufficient to rescue the defect in crypt formation. Finally, inhibition of ACC1 reduces the formation of tumors in colitis-associated colon cancer, together highlighting the importance of cellular lipogenesis for sustaining ISC function and providing a potential perspective to colon cancer therapy.


Asunto(s)
Acetil-CoA Carboxilasa , Lipogénesis , Acetilcoenzima A/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Ácidos Grasos/metabolismo , Lipogénesis/fisiología , Células Madre/metabolismo
20.
Front Microbiol ; 13: 848010, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495730

RESUMEN

Sulfur related prokaryotes residing in hot spring present good opportunity for exploring the limitless possibilities of integral ecosystem processes. Metagenomic analysis further expands the phylogenetic breadth of these extraordinary sulfur (S) metabolizing microorganisms as well as their complex metabolic networks and syntrophic interactions in environmental biosystems. Through this study, we explored and expanded the microbial genetic repertoire with focus on S cycling genes through metagenomic analysis of S contaminated hot spring, located at the Northern Himalayas. The analysis revealed rich diversity of microbial consortia with established roles in S cycling such as Pseudomonas, Thioalkalivibrio, Desulfovibrio, and Desulfobulbaceae (Proteobacteria). The major gene families inferred to be abundant across microbial mat, sediment, and water were assigned to Proteobacteria as reflected from the reads per kilobase (RPKs) categorized into translation and ribosomal structure and biogenesis. An analysis of sequence similarity showed conserved pattern of both dsrAB genes (n = 178) retrieved from all metagenomes while other S disproportionation proteins were diverged due to different structural and chemical substrates. The diversity of S oxidizing bacteria (SOB) and sulfate reducing bacteria (SRB) with conserved (r)dsrAB suggests for it to be an important adaptation for microbial fitness at this site. Here, (i) the oxidative and reductive dsr evolutionary time-scale phylogeny proved that the earliest (but not the first) dsrAB proteins belong to anaerobic Thiobacillus with other (rdsr) oxidizers, also we confirm that (ii) SRBs belongs to δ-Proteobacteria occurring independent lateral gene transfer (LGT) of dsr genes to different and few novel lineages. Further, the structural prediction of unassigned DsrAB proteins confirmed their relatedness with species of Desulfovibrio (TM score = 0.86, 0.98, 0.96) and Archaeoglobus fulgidus (TM score = 0.97, 0.98). We proposed that the genetic repertoire might provide the basis of studying time-scale evolution and horizontal gene transfer of these genes in biogeochemical S cycling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...