Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5813, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987559

RESUMEN

Total internal reflection fluorescence (TIRF) microscopy offers powerful means to uncover the functional organization of proteins in the plasma membrane with very high spatial and temporal resolution. Traditional TIRF illumination, however, shows a Gaussian intensity profile, which is typically deteriorated by overlaying interference fringes hampering precise quantification of intensities-an important requisite for quantitative analyses in single-molecule localization microscopy (SMLM). Here, we combine flat-field illumination by using a standard πShaper with multi-angular TIR illumination by incorporating a spatial light modulator compatible with fast super-resolution structured illumination microscopy (SIM). This distinct combination enables quantitative multi-color SMLM with a highly homogenous illumination. By using a dual camera setup with optimized image splitting optics, we achieve a versatile combination of SMLM and SIM with up to three channels. We deploy this setup for establishing robust detection of receptor stoichiometries based on single-molecule intensity analysis and single-molecule Förster resonance energy transfer (smFRET). Homogeneous illumination furthermore enables long-term tracking and localization microscopy (TALM) of cell surface receptors identifying spatial heterogeneity of mobility and accessibility in the plasma membrane. By combination of TALM and SIM, spatially and molecularly heterogenous diffusion properties can be correlated with nanoscale cytoskeletal organization and dynamics.


Asunto(s)
Membrana Celular , Transferencia Resonante de Energía de Fluorescencia , Microscopía Fluorescente , Imagen Individual de Molécula , Membrana Celular/metabolismo , Imagen Individual de Molécula/métodos , Microscopía Fluorescente/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Animales
2.
Small ; 18(50): e2203723, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36266931

RESUMEN

Qualitative and quantitative analysis of transient signaling platforms in the plasma membrane has remained a key experimental challenge. Here, biofunctional nanodot arrays (bNDAs) are developed to spatially control dimerization and clustering of cell surface receptors at the nanoscale. High-contrast bNDAs with spot diameters of ≈300 nm are obtained by capillary nanostamping of bovine serum albumin bioconjugates, which are subsequently biofunctionalized by reaction with tandem anti-green fluorescence protein (GFP) clamp fusions. Spatially controlled assembly of active Wnt signalosomes is achieved at the nanoscale in the plasma membrane of live cells by capturing the co-receptor Lrp6 into bNDAs via an extracellular GFP tag. Strikingly, co-recruitment is observed of co-receptor Frizzled-8 as well as the cytosolic scaffold proteins Axin-1 and Disheveled-2 into Lrp6 nanodots in the absence of ligand. Density variation and the high dynamics of effector proteins uncover highly cooperative liquid-liquid phase separation (LLPS)-driven assembly of Wnt "signalodroplets" at the plasma membrane, pinpointing the synergistic effects of LLPS for Wnt signaling amplification. These insights highlight the potential of bNDAs for systematically interrogating nanoscale signaling platforms and condensation at the plasma membrane of live cells.


Asunto(s)
Proteínas Wnt , beta Catenina , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Fosforilación , Vía de Señalización Wnt , Membrana Celular/metabolismo
3.
Cell Rep Methods ; 2(2): 100165, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35474965

RESUMEN

Localization and tracking of individual receptors by single-molecule imaging opens unique possibilities to unravel the assembly and dynamics of signaling complexes in the plasma membrane. We present a comprehensive workflow for imaging and analyzing receptor diffusion and interaction in live cells at single molecule level with up to four colors. Two engineered, monomeric GFP variants, which are orthogonally recognized by anti-GFP nanobodies, are employed for efficient and selective labeling of target proteins in the plasma membrane with photostable fluorescence dyes. This labeling technique enables us to quantitatively resolve the stoichiometry and dynamics of the interferon-γ (IFNγ) receptor signaling complex in the plasma membrane of living cells by multicolor single-molecule imaging. Based on versatile spatial and spatiotemporal correlation analyses, we identify ligand-induced receptor homo- and heterodimerization. Multicolor single-molecule co-tracking and quantitative single-molecule Förster resonance energy transfer moreover reveals transient assembly of IFNγ receptor heterotetramers and confirms its structural architecture.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Imagen Individual de Molécula , Imagen Individual de Molécula/métodos , Membrana Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas/química , Colorantes Fluorescentes/química
4.
Commun Biol ; 4(1): 762, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155320

RESUMEN

Overexpression of the receptor tyrosine kinase HER2 plays a critical role in the development of various tumors. Biparatopic designed ankyrin repeat proteins (bipDARPins) potently induce apoptosis in HER2-addicted breast cancer cell lines. Here, we have investigated how the spatiotemporal receptor organization at the cell surface is modulated by these agents and is distinguished from other molecules, which do not elicit apoptosis. Binding of conventional antibodies is accompanied by moderate reduction of receptor mobility, in agreement with HER2 being dimerized by the bivalent IgG. In contrast, the most potent apoptosis-inducing bipDARPins lead to a dramatic arrest of HER2. Dual-color single-molecule tracking revealed that the HER2 "lockdown" by these bipDARPins is caused by the formation of HER2-DARPin oligomer chains, which are trapped in nanoscopic membrane domains. Our findings establish that efficient neutralization of receptor tyrosine kinase signaling can be achieved through intermolecular bipDARPin crosslinking alone, resulting in inactivated, locked-down bipDARPin-HER2 complexes.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Multimerización de Proteína , Receptor ErbB-2/antagonistas & inhibidores , Repetición de Anquirina , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Receptor ErbB-2/química , Receptor ErbB-2/fisiología
5.
Nat Commun ; 12(1): 3790, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145240

RESUMEN

The receptor tyrosine kinase HER2 acts as oncogenic driver in numerous cancers. Usually, the gene is amplified, resulting in receptor overexpression, massively increased signaling and unchecked proliferation. However, tumors become frequently addicted to oncogenes and hence are druggable by targeted interventions. Here, we design an anti-HER2 biparatopic and tetravalent IgG fusion with a multimodal mechanism of action. The molecule first induces HER2 clustering into inactive complexes, evidenced by reduced mobility of surface HER2. However, in contrast to our earlier binders based on DARPins, clusters of HER2 are thereafter robustly internalized and quantitatively degraded. This multimodal mechanism of action is found only in few of the tetravalent constructs investigated, which must target specific epitopes on HER2 in a defined geometric arrangement. The inhibitory effect of our antibody as single agent surpasses the combination of trastuzumab and pertuzumab as well as its parental mAbs in vitro and it is effective in a xenograft model.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias de la Mama/terapia , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Femenino , Células HeLa , Humanos , Inmunoglobulina G/inmunología , Inmunoterapia/métodos , Células MCF-7 , Ratones , Ratones SCID , Trastuzumab/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Elife ; 102021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33513092

RESUMEN

Insights into the conformational organization and dynamics of proteins complexes at membranes is essential for our mechanistic understanding of numerous key biological processes. Here, we introduce graphene-induced energy transfer (GIET) to probe axial orientation of arrested macromolecules at lipid monolayers. Based on a calibrated distance-dependent efficiency within a dynamic range of 25 nm, we analyzed the conformational organization of proteins and complexes involved in tethering and fusion at the lysosome-like yeast vacuole. We observed that the membrane-anchored Rab7-like GTPase Ypt7 shows conformational reorganization upon interactions with effector proteins. Ensemble and time-resolved single-molecule GIET experiments revealed that the HOPS tethering complex, when recruited via Ypt7 to membranes, is dynamically alternating between a 'closed' and an 'open' conformation, with the latter possibly interacting with incoming vesicles. Our work highlights GIET as a unique spectroscopic ruler to reveal the axial orientation and dynamics of macromolecular complexes at biological membranes with sub-nanometer resolution.


Proteins are part of the building blocks of life and are essential for structure, function and regulation of every cell, tissue and organ of the body. Proteins adopt different conformations to work efficiently within the various environments of a cell. They can also switch between shapes. One way to monitor how proteins change their shapes involves energy transfer. This approach can measure how close two proteins, or two parts of the same protein, are, by using dye labels that respond to each other when they are close together. For example, in a method called FRET, one dye label absorbs light and transfers the energy to the other label, which emits it as a different color of light. However, FRET only works over short distances (less than 10nm apart or 1/100,000th of a millimeter), so it is not useful for larger proteins. Here, Füllbrunn, Li et al. developed a method called GIET that uses graphene to analyze the dynamic structures of proteins on membrane surfaces. Graphene is a type of carbon nanomaterial that can absorb energy from dye labels and could provide a way to study protein interactions over longer distances. Graphene was deposited on a glass surface where it was coated with single layer of membrane, which could then be used to capture specific proteins. The results showed that GIET worked over longer distances (up to 30 nm) than FRET and could be used to study proteins attached to the membrane around graphene. Füllbrunn, Li et al. used it to examine a specific complex of proteins called HOPS, which is linked to multiple diseases, including Ebola, measuring distances between the head or tail of HOPS and the membrane to understand protein shapes. This revealed that HOPS adopts an upright position on membranes and alternates between open and closed shapes. The study of Füllbrunn, Li et al. highlights the ability of GIET to address unanswered questions about the function of protein complexes on membrane surfaces and sheds new light on the structural dynamics of HOPS in living cells. As it allows protein interactions to be studied over much greater distances, GIET could be a powerful new tool for cell biology research. Moreover, graphene is also useful in electron microscopy and both approaches combined could achieve a detailed structural picture of proteins in action.


Asunto(s)
Membrana Celular/metabolismo , Grafito/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Membrana Celular/ultraestructura , Saccharomyces cerevisiae/ultraestructura
7.
PLoS Pathog ; 16(7): e1008220, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32658937

RESUMEN

The intracellular lifestyle of Salmonella enterica is characterized by the formation of a replication-permissive membrane-bound niche, the Salmonella-containing vacuole (SCV). As a further consequence of the massive remodeling of the host cell endosomal system, intracellular Salmonella establish a unique network of various Salmonella-induced tubules (SIT). The bacterial repertoire of effector proteins required for the establishment for one type of these SIT, the Salmonella-induced filaments (SIF), is rather well-defined. However, the corresponding host cell proteins are still poorly understood. To identify host factors required for the formation of SIF, we performed a sub-genomic RNAi screen. The analyses comprised high-resolution live cell imaging to score effects on SIF induction, dynamics and morphology. The hits of our functional RNAi screen comprise: i) The late endo-/lysosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, consisting of STX7, STX8, VTI1B, and VAMP7 or VAMP8, which is, in conjunction with RAB7 and the homotypic fusion and protein sorting (HOPS) tethering complex, a complete vesicle fusion machinery. ii) Novel interactions with the early secretory GTPases RAB1A and RAB1B, providing a potential link to coat protein complex I (COPI) vesicles and reinforcing recently identified ties to the endoplasmic reticulum. iii) New connections to the late secretory pathway and/or the recycling endosome via the GTPases RAB3A, RAB8A, and RAB8B and the SNAREs VAMP2, VAMP3, and VAMP4. iv) An unprecedented involvement of clathrin-coated structures. The resulting set of hits allowed us to characterize completely new host factor interactions, and to strengthen observations from several previous studies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Endosomas/metabolismo , Endosomas/microbiología , Células HeLa , Humanos , Lisosomas/metabolismo , Lisosomas/microbiología , ARN Interferente Pequeño
8.
Science ; 367(6478): 643-652, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32029621

RESUMEN

Homodimeric class I cytokine receptors are assumed to exist as preformed dimers that are activated by ligand-induced conformational changes. We quantified the dimerization of three prototypic class I cytokine receptors in the plasma membrane of living cells by single-molecule fluorescence microscopy. Spatial and spatiotemporal correlation of individual receptor subunits showed ligand-induced dimerization and revealed that the associated Janus kinase 2 (JAK2) dimerizes through its pseudokinase domain. Oncogenic receptor and hyperactive JAK2 mutants promoted ligand-independent dimerization, highlighting the formation of receptor dimers as the switch responsible for signal activation. Atomistic modeling and molecular dynamics simulations based on a detailed energetic analysis of the interactions involved in dimerization yielded a mechanistic blueprint for homodimeric class I cytokine receptor activation and its dysregulation by individual mutations.


Asunto(s)
Carcinogénesis/genética , Membrana Celular/química , Janus Quinasa 2/química , Janus Quinasa 2/genética , Multimerización de Proteína , Receptores de Eritropoyetina/química , Receptores de Somatotropina/química , Receptores de Trombopoyetina/química , Sustitución de Aminoácidos/genética , Células HeLa , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Ligandos , Microscopía Fluorescente , Modelos Moleculares , Mutación , Nitrilos , Fenilalanina/genética , Pirazoles/farmacología , Pirimidinas , Transducción de Señal , Imagen Individual de Molécula , Valina/genética
9.
Biochim Biophys Acta Bioenerg ; 1861(1): 148091, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669489

RESUMEN

F1FO ATP synthase, also known as complex V, is a key enzyme of mitochondrial energy metabolism that can synthesize and hydrolyze ATP. It is not known whether the ATP synthase and ATPase function are correlated with a different spatio-temporal organisation of the enzyme. In order to analyze this, we tracked and localized single ATP synthase molecules in situ using live cell microscopy. Under normal conditions, complex V was mainly restricted to cristae indicated by orthogonal trajectories along the cristae membranes. In addition confined trajectories that are quasi immobile exist. By inhibiting glycolysis with 2-DG, the activity and mobility of complex V was altered. The distinct cristae-related orthogonal trajectories of complex V were obliterated. Moreover, a mobile subpopulation of complex V was found in the inner boundary membrane. The observed changes in the ratio of dimeric/monomeric complex V, respectively less mobile/more mobile complex V and its activity changes were reversible. In IF1-KO cells, in which ATP hydrolysis is not inhibited by IF1, complex V was more mobile, while inhibition of ATP hydrolysis by BMS-199264 reduced the mobility of complex V. Taken together, these data support the existence of different subpopulations of complex V, ATP synthase and ATP hydrolase, the latter with higher mobility and probably not prevailing at the cristae edges. Obviously, complex V reacts quickly and reversibly to metabolic conditions, not only by functional, but also by spatial and structural reorganization.


Asunto(s)
Adenosina Trifosfato/metabolismo , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/genética , Células HeLa , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón/genética
10.
RSC Adv ; 9(43): 24742-24750, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35528685

RESUMEN

We report the parallel generation of close-packed ordered silane nanodot arrays with nanodot diameters of few 100 nm and nearest-neighbor distances in the one-micron range. Capillary nanostamping of heterocyclic silanes coupled with ring-opening triggered by hydroxyl groups at the substrate surfaces yields nanodots consisting of silane monolayers with exposed terminal functional groups. Using spongy mesoporous silica stamps with methyl-terminated mesopore walls inert towards the heterocyclic silanes, we could manually perform multiple successive stamping cycles under ambient conditions without interruptions for ink refilling. Further functionalizations include the synthesis of polymer nanobrushes on the silane nanodots by surface-initiated atom-transfer radical polymerization. Proteins-of-interest fused to the HaloTag were site-specifically captured to silane nanodots functionalized by copper-free reactions with azide derivatives. Thus, bioorthogonal functionalization for bioanalytics with a spatial resolution in the one-micron range may be realized on solid supports compatible with fluorescence-based optical microscopy. The feature sizes of the silane nanodot arrays match well the length scales characteristic of a variety of biomolecular submicroscopic organizations in living cells, thus representing a compromise between miniaturization and the resolution limit of optical microscopy for sensitive high-throughput bioanalytics.

11.
J Vis Exp ; (136)2018 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-30010642

RESUMEN

Knowledge about the localization of proteins in cellular subcompartments is crucial to understand their specific function. Here, we present a super-resolution technique that allows for the determination of the microcompartments that are accessible for proteins by generating localization and tracking maps of these proteins. Moreover, by multi-color localization microscopy, the localization and tracking profiles of proteins in different subcompartments are obtained simultaneously. The technique is specific for live cells and is based on the repetitive imaging of single mobile membrane proteins. Proteins of interest are genetically fused with specific, so-called self-labeling tags. These tags are enzymes that react with a substrate in a covalent manner. Conjugated to these substrates are fluorescent dyes. Reaction of the enzyme-tagged proteins with the fluorescence labeled substrates results in labeled proteins. Here, Tetramethylrhodamine (TMR) and Silicon Rhodamine (SiR) are used as fluorescent dyes attached to the substrates of the enzymes. By using substrate concentrations in the pM to nM range, sub-stoichiometric labeling is achieved that results in distinct signals. These signals are localized with ~15-27 nm precision. The technique allows for multi-color imaging of single molecules, whereby the number of colors is limited by the available membrane-permeable dyes and the repertoire of self-labeling enzymes. We show the feasibility of the technique by determining the localization of the quality control enzyme (Pten)-induced kinase 1 (PINK1) in different mitochondrial compartments during its processing in relation to other membrane proteins. The test for true physical interactions between differently labeled single proteins by single molecule FRET or co-tracking is restricted, though, because the low labeling degrees decrease the probability for having two adjacent proteins labeled at the same time. While the technique is strong for imaging proteins in membrane compartments, in most cases it is not appropriate to determine the localization of highly mobile soluble proteins.


Asunto(s)
Colorantes Fluorescentes/química , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente/métodos , Orgánulos/metabolismo , Animales , Transfección
12.
Nat Commun ; 9(1): 1521, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670084

RESUMEN

Synthetically replicating key biological processes requires the ability to puncture lipid bilayer membranes and to remodel their shape. Recently developed artificial DNA nanopores are one possible synthetic route due to their ease of fabrication. However, an unresolved fundamental question is how DNA nanopores bind to and dynamically interact with lipid bilayers. Here we use single-molecule fluorescence microscopy to establish that DNA nanopores carrying cholesterol anchors insert via a two-step mechanism into membranes. Nanopores are furthermore shown to locally cluster and remodel membranes into nanoscale protrusions. Most strikingly, the DNA pores can function as cytoskeletal components by stabilizing autonomously formed lipid nanotubes. The combination of membrane puncturing and remodeling activity can be attributed to the DNA pores' tunable transition between two orientations to either span or co-align with the lipid bilayer. This insight is expected to catalyze the development of future functional nanodevices relevant in synthetic biology and nanobiotechnology.


Asunto(s)
ADN/genética , Membrana Dobles de Lípidos/química , Nanoestructuras/química , Membrana Celular/metabolismo , Colesterol/química , ADN/química , Lípidos/química , Lípidos de la Membrana/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Nanoporos , Nanotubos , Polímeros/química , Biología Sintética
13.
J Cell Biol ; 217(4): 1303-1318, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29463567

RESUMEN

Stress granules (SGs) are cytosolic, nonmembranous RNA-protein complexes. In vitro experiments suggested that they are formed by liquid-liquid phase separation; however, their properties in mammalian cells remain unclear. We analyzed the distribution and dynamics of two paradigmatic RNA-binding proteins (RBPs), Ras GTPase-activating protein SH3-domain-binding protein (G3BP1) and insulin-like growth factor II mRNA-binding protein 1 (IMP1), with single-molecule resolution in living neuronal cells. Both RBPs exhibited different exchange kinetics between SGs. Within SGs, single-molecule localization microscopy revealed distributed hotspots of immobilized G3BP1 and IMP1 that reflect the presence of relatively immobile nanometer-sized nanocores. We demonstrate alternating binding in nanocores and anomalous diffusion in the liquid phase with similar characteristics for both RBPs. Reduction of low-complexity regions in G3BP1 resulted in less detectable mobile molecules in the liquid phase without change in binding in nanocores. The data provide direct support for liquid droplet behavior of SGs in living cells and reveal transient binding of RBPs in nanocores. Our study uncovers a surprising disconnect between SG partitioning and internal diffusion and interactions of RBPs.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Microscopía Confocal , Neuronas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Imagen Individual de Molécula/métodos , Estrés Fisiológico , Animales , Arsenitos/farmacología , Gránulos Citoplasmáticos/efectos de los fármacos , ADN Helicasas/genética , Difusión , Humanos , Cinética , Modelos Biológicos , Neuronas/efectos de los fármacos , Células PC12 , Proteínas de Unión a Poli-ADP-Ribosa/genética , Unión Proteica , Transporte de Proteínas , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas de Unión al ARN/genética , Ratas , Compuestos de Sodio/farmacología
14.
J Biol Chem ; 291(47): 24735-24746, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27729449

RESUMEN

Single-molecule photobleaching has emerged as a powerful non-invasive approach to extract the stoichiometry of multimeric membrane proteins in their native cellular environment. However, this method has mainly been used to determine the subunit composition of ion channels and receptors at the plasma membrane. Here, we applied single-molecule photobleaching to analyze the oligomeric state of an endoplasmic reticulum (ER) resident candidate ceramide sensor protein, SMSr/SAMD8. Co-immunoprecipitation and chemical cross-linking studies previously revealed that the N-terminal sterile alpha motif (or SAM) domain of SMSr drives self-assembly of the protein into oligomers and that SMSr oligomerization is promoted by curcumin, a drug known to perturb ER ceramide and calcium homeostasis. Application of cell spreading surface-active coating materials in combination with total internal reflection fluorescence (TIRF) microscopy allowed us to image GFP-tagged SMSr proteins as single fluorescent spots in the ER of HeLa cells in which expression of endogenous SMSr was abolished. In line with our biochemical analysis, we find that the number of bleaching steps in SMSr-GFP-positive spots displays a substantial drop after removal of the SAM domain. In contrast, treatment of cells with curcumin increased the number of bleaching steps. Our results document the first successful application of single-molecule photobleaching to resolve drug-induced and domain-dependent changes in the oligomeric state of an ER-resident membrane protein, hence establishing a complementary method to unravel the mechanism by which SMSr controls ceramide levels in the ER.


Asunto(s)
Ceramidas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Fotoblanqueo , Ceramidas/química , Retículo Endoplásmico/química , Células HeLa , Humanos , Proteínas de la Membrana/química , Microscopía Fluorescente
15.
Sci Rep ; 6: 31601, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27534893

RESUMEN

The investigation of the subcellular localization, dynamics and interaction of proteins and protein complexes in prokaryotes is complicated by the small size of the cells. Super-resolution microscopy (SRM) comprise various new techniques that allow light microscopy with a resolution that can be up to ten-fold higher than conventional light microscopy. Application of SRM techniques to living prokaryotes demands the introduction of suitable fluorescent probes, usually by fusion of proteins of interest to fluorescent proteins with properties compatible to SRM. Here we describe an approach that is based on the genetically encoded self-labelling enzymes HaloTag and SNAP-tag. Proteins of interest are fused to HaloTag or SNAP-tag and cell permeable substrates can be labelled with various SRM-compatible fluorochromes. Fusions of the enzyme tags to subunits of a type I secretion system (T1SS), a T3SS, the flagellar rotor and a transcription factor were generated and analysed in living Salmonella enterica. The new approach is versatile in tagging proteins of interest in bacterial cells and allows to determine the number, relative subcellular localization and dynamics of protein complexes in living cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Colorantes Fluorescentes/metabolismo , Imagen Molecular/métodos , Salmonella enterica/enzimología , Coloración y Etiquetado/métodos , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Colorantes Fluorescentes/farmacología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Salmonella enterica/citología , Salmonella enterica/genética
16.
J Cell Biol ; 209(4): 579-93, 2015 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-26008745

RESUMEN

Type I interferons (IFNs) activate differential cellular responses through a shared cell surface receptor composed of the two subunits, IFNAR1 and IFNAR2. We propose here a mechanistic model for how IFN receptor plasticity is regulated on the level of receptor dimerization. Quantitative single-molecule imaging of receptor assembly in the plasma membrane of living cells clearly identified IFN-induced dimerization of IFNAR1 and IFNAR2. The negative feedback regulator ubiquitin-specific protease 18 (USP18) potently interferes with the recruitment of IFNAR1 into the ternary complex, probably by impeding complex stabilization related to the associated Janus kinases. Thus, the responsiveness to IFNα2 is potently down-regulated after the first wave of gene induction, while IFNß, due to its ∼100-fold higher binding affinity, is still able to efficiently recruit IFNAR1. Consistent with functional data, this novel regulatory mechanism at the level of receptor assembly explains how signaling by IFNß is maintained over longer times compared with IFNα2 as a temporally encoded cause of functional receptor plasticity.


Asunto(s)
Endopeptidasas/metabolismo , Interferón Tipo I/fisiología , Receptor de Interferón alfa y beta/metabolismo , Células HeLa , Humanos , Janus Quinasa 1/metabolismo , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica , Transducción de Señal , Ubiquitina Tiolesterasa
17.
Nano Lett ; 15(5): 3610-5, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25901412

RESUMEN

We developed in situ single cell pull-down (SiCPull) of GFP-tagged protein complexes based on micropatterned functionalized surface architectures. Cells cultured on these supports are lysed by mild detergents and protein complexes captured to the surface are probed in situ by total internal reflection fluorescence microscopy. Using SiCPull, we quantitatively mapped the lifetimes of various signal transducer and activator of transcription complexes by monitoring dissociation from the surface and defined their stoichiometry on the single molecule level.


Asunto(s)
Citosol/química , Complejos Multiproteicos/química , Análisis de la Célula Individual , Citosol/metabolismo , Humanos , Microscopía Fluorescente , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Propiedades de Superficie
18.
Cell ; 160(6): 1196-208, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25728669

RESUMEN

Most cell-surface receptors for cytokines and growth factors signal as dimers, but it is unclear whether remodeling receptor dimer topology is a viable strategy to "tune" signaling output. We utilized diabodies (DA) as surrogate ligands in a prototypical dimeric receptor-ligand system, the cytokine Erythropoietin (EPO) and its receptor (EpoR), to dimerize EpoR ectodomains in non-native architectures. Diabody-induced signaling amplitudes varied from full to minimal agonism, and structures of these DA/EpoR complexes differed in EpoR dimer orientation and proximity. Diabodies also elicited biased or differential activation of signaling pathways and gene expression profiles compared to EPO. Non-signaling diabodies inhibited proliferation of erythroid precursors from patients with a myeloproliferative neoplasm due to a constitutively active JAK2V617F mutation. Thus, intracellular oncogenic mutations causing ligand-independent receptor activation can be counteracted by extracellular ligands that re-orient receptors into inactive dimer topologies. This approach has broad applications for tuning signaling output for many dimeric receptor systems.


Asunto(s)
Receptores de Eritropoyetina/química , Receptores de Eritropoyetina/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Línea Celular , Cristalografía por Rayos X , Dimerización , Eritropoyetina/metabolismo , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutación Puntual , Ingeniería de Proteínas , Receptores de Eritropoyetina/agonistas , Receptores de Eritropoyetina/antagonistas & inhibidores , Alineación de Secuencia
19.
ACS Chem Biol ; 9(11): 2479-84, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25203456

RESUMEN

Dimerization of transmembrane receptors is a key regulatory factor in cellular communication, which has remained challenging to study under well-defined conditions in vitro. We developed a novel strategy to explore membrane protein interactions in a controlled lipid environment requiring minute sample quantities. By rapid transfer of transmembrane proteins from mammalian cells into polymer-supported membranes, membrane proteins could be efficiently fluorescence labeled and reconstituted with very low background. Thus, differential ligand-induced dimerization of the type I interferon (IFN) receptor subunits IFNAR1 and IFNAR2 could be probed quantitatively at physiologically relevant concentrations by single molecule imaging. These measurements clearly support a regulatory role of the affinity of IFNs toward IFNAR1 for controlling the level of receptor dimerization.


Asunto(s)
Proteínas de la Membrana/química , Polímeros/química , Animales , Dimerización , Ligandos , Mamíferos
20.
Anal Chem ; 86(17): 8593-602, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25148216

RESUMEN

Unraveling the spatiotemporal organization of signaling complexes within the context of plasma membrane nanodomains has remained a highly challenging task. Here, we have applied super-resolution image correlation based on tracking and localization microscopy (TALM) for probing transient confinement as well as ligand binding and intracellular effector recruitment of the type I interferon (IFN) receptor in the plasma membrane of live cells. Ligand and receptor were labeled with monofunctional quantum dots, thus allowing long-term tracking with very high spatial and temporal resolution without an artificial receptor cross-linking at the cell surface. Dual-color TALM was employed for visualizing protein-protein interactions involved in IFN signaling at both sides of the plasma membrane with high spatial and temporal resolution. By pair correlation analyses based on time-lapse TALM images (pcTALM), complex assembly within dynamic submicroscopic zones was identified. Strikingly, recruitment of the IFN effector protein signal transducer and activator of transcription 2 (STAT2) into these dynamic signaling zones could be observed. The results suggest that confined diffusion zones in the plasma membrane are employed as transient platforms for the assembly of signaling complexes.


Asunto(s)
Microscopía Fluorescente , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal , Biotina/química , Biotina/metabolismo , Membrana Celular/metabolismo , Células HeLa , Humanos , Oligopéptidos/química , Oligopéptidos/metabolismo , Mapas de Interacción de Proteínas , Puntos Cuánticos/química , Receptor de Interferón alfa y beta/genética , Factor de Transcripción STAT2/metabolismo , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...