Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Wien Klin Wochenschr ; 136(7-8): 236-238, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38305909

RESUMEN

Techniques of artificial intelligence (AI) are increasingly used in the treatment of patients, such as providing a diagnosis in radiological imaging, improving workflow by triaging patients or providing an expert opinion based on clinical symptoms; however, such AI techniques also hold intrinsic risks as AI algorithms may point in the wrong direction and constitute a black box without explaining the reason for the decision-making process.This article outlines a case where an erroneous ChatGPT diagnosis, relied upon by the patient to evaluate symptoms, led to a significant treatment delay and a potentially life-threatening situation. With this case, we would like to point out the typical risks posed by the widespread application of AI tools not intended for medical decision-making.


Asunto(s)
Ataque Isquémico Transitorio , Humanos , Ataque Isquémico Transitorio/diagnóstico , Ataque Isquémico Transitorio/etiología , Inteligencia Artificial , Diagnóstico Tardío , Algoritmos , Toma de Decisiones Clínicas
2.
Neurourol Urodyn ; 43(1): 236-245, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37767637

RESUMEN

OBJECTIVES: A feasibility proof-of-concept study was conducted to assess the effects of acute tibial nerve stimulation (TNS) on the central nervous system in healthy volunteers using functional magnetic resonance imaging (fMRI). MATERIALS AND METHODS: Fourteen healthy volunteers were included in a prospective, single-site study conducted on a clinical 3T MRI scanner. Four scans of functional MRI, each lasting 6 min, were acquired: two resting-state fMRI scans (prior and following the TNS intervention) and in-between two fMRI scans, both consisting of alternating rest periods and noninvasive acute transcutaneous TNS (TTNS). Whole brain seed-based functional connectivity (FC) correlation analysis was performed comparing TTNS stimulation with rest periods. Cluster-level familywise error (FWE) corrected p and a minimal cluster size of 200 voxels were used to explore FC patterns. RESULTS: Increased FC is reported between inferior frontal gyrus, posterior cingulate gyrus, and middle temporal gyrus with the precuneus as central receiving node. In addition, decreased FC in the cerebellum, hippocampus, and parahippocampal areas was observed. CONCLUSIONS: Altered FC is reported in areas which have been described to be also involved in lower urinary tract control. Although conducted with healthy controls, the assumption that the underlying therapeutic effect of TNS involves the central nervous system is supported and has to be further examined in patients with incomplete spinal cord injury.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Mapeo Encefálico/métodos , Nervio Tibial/diagnóstico por imagen
3.
Laryngorhinootologie ; 102(12): 916-927, 2023 12.
Artículo en Alemán | MEDLINE | ID: mdl-37734389

RESUMEN

Ultrasound-guided ablation techniques have been increasingly introduced into routine treatment of thyroid lesions as a complement to existing surgical therapies and radioiodine treatment. In cystic or predominantly cystic lesions instillation therapy (ethanol/polidocanol ablation) has yielded good results. Novel thermal ablation techniques, including radiofrequency ablation (RFA), microwave ablation (MWA), laser ablation (LA) and high intensity focused ultrasound (HIFU), induce irreversible cellular effects by locally applying temperatures ≥ 60 °C to the targeted thyroid region. Lesions causing local symptoms or focal hyperfunctionality can thus be selectively treated under continuous sonographic monitoring. While a considerable body of evidence supports the efficacy and safety of various local ablative techniques, future challenges lie in initiating comparative prospective trials and in standardizing clinical practice, training and continuous quality assessment on a regional and superregional level. In the future, it shall be indicated to include local ablative techniques - so far not known to all patients in Germany - into the informed decision-making process as a suitable alternative or supplement to existing therapies.


Asunto(s)
Técnicas de Ablación , Ablación por Catéter , Humanos , Glándula Tiroides/diagnóstico por imagen , Radioisótopos de Yodo , Estudios Prospectivos , Técnicas de Ablación/métodos , Ultrasonografía Intervencional , Ablación por Catéter/métodos , Resultado del Tratamiento
4.
Sci Rep ; 13(1): 7245, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142669

RESUMEN

The aim of this exploratory study was the assessment of the metabolic profiles of persons with complete spinal cord injury (SCI) in three region-of-interests (pons, cerebellar vermis, and cerebellar hemisphere), with magnetic resonance spectroscopy, and their correlations to clinical scores. Group differences and association between metabolic and clinical scores were examined. Fifteen people with chronic SCI (cSCI), five people with subacute SCI (sSCI) and fourteen healthy controls were included. Group comparison between cSCI and HC showed lower total N-acetyl-aspartate (tNAA) in the pons (p = 0.04) and higher glutathione (GSH) in the cerebellar vermis (p = 0.02). Choline levels in the cerebellar hemisphere were different between cSCI and HC (p = 0.02) and sSCI and HC (p = 0.02). A correlation was reported for choline containing compounds (tCho) to clinical scores in the pons (rho = - 0.55, p = 0.01). tNAA to total creatine (tNAA/tCr ratio) correlated to clinical scores in the cerebellar vermis (rho = 0.61, p = 0.004) and GSH correlated to the independence score in the cerebellar hemisphere (rho = 0.56, p = 0.01). The correlation of tNAA, tCr, tCho and GSH to clinical scores might be indicators on how well the CNS copes with the post-traumatic remodeling and might be further examined as outcome markers.


Asunto(s)
Cerebelo , Traumatismos de la Médula Espinal , Humanos , Espectroscopía de Protones por Resonancia Magnética , Cerebelo/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Puente/diagnóstico por imagen , Puente/metabolismo , Creatina/metabolismo , Metaboloma , Colina/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Ácido Aspártico/metabolismo
5.
Invest Radiol ; 58(2): 131-138, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926077

RESUMEN

OBJECTIVES: In spinal cord injury (SCI), the primary mechanical injury is followed by secondary sequelae that develop over the subsequent months and manifests in biochemical, functional, and microstructural alterations, at the site of direct injury but also in the spinal cord tissue above and below the actual lesion site. Noninvasive magnetic resonance spectroscopy (MRS) can be used to assess biochemical modulation occurring in the secondary injury phase, in addition to and supporting conventional MRI, and might help predict and improve patient outcome. In this article, we aimed to examine the metabolic levels in the pons of subacute SCI by means of in vivo proton MRS at 3 T and explore the association to clinical scores. MATERIALS AND METHODS: In this prospective study, between November 2015 and February 2018, single-voxel short-echo MRS data were acquired in healthy controls and in SCI subjects in the pons once during rehabilitation. Besides the single-point MRS examination, in addition, in participants with SCI, the clinical status (ie, motor, light touch, and pinprick scores) was assessed twice: (1) around the MRS session (approximately 10 weeks postinjury) and (2) before discharge (at approximately 9 months postinjury). The group differences were assessed with Kruskal-Wallis test, the post hoc comparison was assessed with Wilcoxon rank sum test, and the clinical correlations were conducted with Spearman rank correlation test. Bayes factor calculations completed the statistical part providing relevant evidence values. RESULTS: Twenty healthy controls (median age, 50 years; interquartile range, 41-55 years; 18 men) and 18 subjects with traumatic SCI (median age, 50 years; interquartile range, 32-58 years; 16 men) are included. Group comparison showed an increase of total N -acetylaspartate and combined glutamate and glutamine levels in complete SCI and a reduction of total creatine in incomplete paraplegic SCI. The proton MRS-based glutathione levels at baseline correlate to the motor score improvement during rehabilitation in incomplete subacute SCI. CONCLUSIONS: This exploratory study showed an association of the metabolite concentration of glutathione in the pons assessed at approximately 10 weeks after injury with the improvements of the motor score during the rehabilitation. Pontine glutathione levels in subjects with traumatic subacute incomplete SCI acquired remote from the injury site correlate to clinical score and might therefore be beneficial in the rehabilitation assessments.


Asunto(s)
Protones , Traumatismos de la Médula Espinal , Masculino , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Teorema de Bayes , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/patología , Puente/diagnóstico por imagen , Puente/patología
6.
Sci Rep ; 12(1): 20874, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463248

RESUMEN

After spinal cord injury (SCI), reorganization processes and changes in brain connectivity occur. Besides the sensorimotor cortex, the subcortical areas are strongly involved in motion and executive control. This exploratory study focusses on the cerebellum and vermis. Resting-state functional magnetic resonance imaging (fMRI) was performed. Between-group differences were computed using analysis of covariance and post-hoc tests for the seed-based connectivity measure with vermis and cerebellum as regions of interest. Twenty participants with complete SCI (five subacute SCI, 15 with chronic SCI) and 14 healthy controls (HC) were included. Functional connectivity (FC) was lower in all subjects with SCI compared with HC in vermis IX, right superior frontal gyrus (pFDR = 0.008) and right lateral occipital cortex (pFDR = 0.036). In addition, functional connectivity was lower in participants with chronic SCI compared with subacute SCI in bilateral cerebellar crus I, left precentral- and middle frontal gyrus (pFDR = 0.001). Furthermore, higher amplitude of low-frequency fluctuations (ALFF) was found in the left thalamus in individuals with subacute SCI (pFDR = 0.002). Reduced FC in SCI indicates adaptation with associated deficit in sensory and motor function. The increased ALFF in subacute SCI might reflect reorganization processes in the subacute phase.


Asunto(s)
Enfermedad Injerto contra Huésped , Corteza Sensoriomotora , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Lóbulo Occipital
7.
Phys Rev E ; 106(1-1): 014107, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35974518

RESUMEN

The rich ground-state phase diagram of the mixed spin-(1,1/2) Heisenberg octahedral chain was previously elaborated from effective mixed-spin Heisenberg chains, which were derived by employing a local conservation of a total spin on square plaquettes of an octahedral chain. Here we present a comprehensive analysis of the thermodynamic properties of this model. In the highly frustrated parameter region the lowest-energy eigenstates of the mixed-spin Heisenberg octahedral chain belong to flat bands, which allow a precise description of low-temperature magnetic properties within the localized-magnon approach exploiting a classical lattice-gas model of hard-core monomers. The present article provides a more comprehensive version of the localized-magnon approach, which extends the range of its validity down to a less frustrated parameter region involving the Haldane and cluster-based Haldane ground states. A comparison between results of the developed localized-magnon theory and accurate numerical methods such as full exact diagonalization and finite-temperature Lanczos technique convincingly evidence that the low-temperature magnetic properties above the Haldane and the cluster-based Haldane ground states can be extracted from a classical lattice-gas model of hard-core monomers and dimers, which is additionally supplemented by a hard-core particle spanned over the whole lattice representing the gapped Haldane phase.

8.
Acta Radiol ; 63(5): 632-641, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34056917

RESUMEN

X-ray contrast media have been reported to have inhibitory effects on bacterial growth. Despite its potentially beneficial effect on patients, these features of contrast media have received relatively little attention in the medical literature in the past decades. The aim of this review is to evaluate the literature concerning the bactericidal and bacteriostatic effects of X-ray contrast media, specifically if there is a known difference concerning these effects between ionic and non-ionic contrast media. Systematic literature review was performed for the years of publication between 1911 and 2019. Since the publication of Grossich in 1911, the effect of iodine on the treatment of superficial infections in surgical procedures has been established clinical knowledge. Bacteriostatic and bactericidal effects of ionic X-ray contrast media are well established. However, non-ionic contrast agents have been the subject of little research in this respect. In past decades, the hypothesis emerged in the literature that mainly the concentration of free iodine might be responsible for any bacteriostatic or bactericidal effect of ionic X-ray contrast media. Nowadays, however, only non-ionic contrast media are used. The question regarding the mechanism and magnitude of bacteriostatic or bactericidal effects of these, non-ionic contrast media, could not be answered conclusively from this review. Non-ionic contrast media could be used intentionally when a local antibacterial effect is intended (e.g. in percutaneous abscess drainage), as well as to reduce the overall dose of antibiotics administered to a patient. Thus, this question remains relevant and might constitute the area of future research.


Asunto(s)
Medios de Contraste , Yodo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Medios de Contraste/efectos adversos , Humanos , Yodo/farmacología , Rayos X
9.
Micromachines (Basel) ; 12(5)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946861

RESUMEN

Reflectance anisotropy spectroscopy (RAS), which was originally invented to monitor epitaxial growth, can-as we have previously shown-also be used to monitor the reactive ion etching of III/V semiconductor samples in situ and in real time, as long as the etching rate is not too high and the abrasion at the etch front is not totally chaotic. Moreover, we have proven that-using RAS equipment and optical Fabry‒Perot oscillations due to the ever-shrinking thickness of the uppermost etched layer-the in situ etch-depth resolution can be as good as ±0.8 nm, employing a Vernier-scale type measurement and evaluation procedure. Nominally, this amounts to ±1.3 lattice constants in our exemplary material system, AlGaAsSb, on a GaAs or GaSb substrate. In this contribution, we show that resolutions of about ±5.6 nm can be reliably achieved without a Vernier scale protocol by employing thin doped layers or sharp interfaces between differently doped layers or quantum-dot (QD) layers as etch-stop indicators. These indicator layers can either be added to the device layer design on purpose or be part of it incidentally due to the functionality of the device. For typical etch rates in the range of 0.7 to 1.3 nm/s (that is, about 40 to 80 nm/min), the RAS spectrum will show a distinct change even for very thin indicator layers, which allows for the precise termination of the etch run.

10.
Phys Rev Lett ; 125(11): 117207, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32975976

RESUMEN

We present numerical evidence for the crystallization of magnons below the saturation field at nonzero temperatures for the highly frustrated spin-half kagome Heisenberg antiferromagnet. This phenomenon can be traced back to the existence of independent localized magnons or, equivalently, flatband multimagnon states. We present a loop-gas description of these localized magnons and a phase diagram of this transition, thus providing information for which magnetic fields and temperatures magnon crystallization can be observed experimentally. The emergence of a finite-temperature continuous transition to a magnon crystal is expected to be generic for spin models in dimension D>1 where flatband multimagnon ground states break translational symmetry.

11.
Neurosurgery ; 88(1): 96-105, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32779716

RESUMEN

BACKGROUND: The Barrow Neurological Institute (BNI) score, measuring maximal thickness of aneurysmal subarachnoid hemorrhage (aSAH), has previously shown to predict symptomatic cerebral vasospasms (CVSs), delayed cerebral ischemia (DCI), and functional outcome. OBJECTIVE: To validate the BNI score for prediction of above-mentioned variables and cerebral infarct and evaluate its improvement by integrating further variables which are available within the first 24 h after hemorrhage. METHODS: We included patients from a single center. The BNI score for prediction of CVS, DCI, infarct, and functional outcome was validated in our cohort using measurements of calibration and discrimination (area under the curve [AUC]). We improved it by adding additional variables, creating a novel risk score (measure by the dichotomized Glasgow Outcome Scale) and validated it in a small independent cohort. RESULTS: Of 646 patients, 41.5% developed symptomatic CVS, 22.9% DCI, 23.5% cerebral infarct, and 29% had an unfavorable outcome. The BNI score was associated with all outcome measurements. We improved functional outcome prediction accuracy by including age, BNI score, World Federation of Neurologic Surgeons, rebleeding, clipping, and hydrocephalus (AUC 0.84, 95% CI 0.8-0.87). Based on this model we created a risk score (HATCH-Hemorrhage, Age, Treatment, Clinical State, Hydrocephalus), ranging 0 to 13 points. We validated it in a small independent cohort. The validated score demonstrated very good discriminative ability (AUC 0.84 [95% CI 0.72-0.96]). CONCLUSION: We developed the HATCH score, which is a moderate predictor of DCI, but excellent predictor of functional outcome at 1 yr after aSAH.


Asunto(s)
Recuperación de la Función , Índice de Severidad de la Enfermedad , Hemorragia Subaracnoidea/patología , Hemorragia Subaracnoidea/cirugía , Adulto , Anciano , Isquemia Encefálica/etiología , Estudios de Cohortes , Femenino , Humanos , Hidrocefalia/etiología , Masculino , Persona de Mediana Edad , Pronóstico , Hemorragia Subaracnoidea/complicaciones , Vasoespasmo Intracraneal/etiología
13.
J Am Chem Soc ; 142(2): 777-782, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31851510

RESUMEN

Metal-halide perovskites show excellent properties for photovoltaic and optoelectronic applications, with power conversion efficiencies of solar cell and LEDs exceeding 20%. Being solution processed, these polycrystalline materials likely contain a large density of defects compared to melt-grown semiconductors. Surprisingly, typical effects from defects (absorption below the bandgap, low fill factor and open circuit voltage in devices, strong nonradiative recombination) are not observed. In this work, we study thin films of metal-halide perovskites CH3NH3PbX3 (X = Br, I) with ultrafast multidimensional optical spectroscopy to resolve the dynamics of band and defect states. We observe a shared ground state between the band-edge transitions and a continuum of sub-bandgap states, which extends at least 350 meV below the band edge). We explain the comparatively large bleaching of the dark sub-bandgap states with oscillator strength borrowing from the band-edge transition. Our results show that upon valence to conduction band excitation, such subgap states are instantaneously bleached for large parts of the carrier lifetime and conversely that most dark sub-bandgap states can be populated by light excitation. This observation helps to unravel the photophysical origin of the unexpected optoelectronic properties of these materials.

14.
ACS Nano ; 13(12): 13716-13727, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31738516

RESUMEN

Optoelectronic devices based on conjugated polymers often rely on multilayer device architectures, as it is difficult to design all the different functional requirements, in particular the need for efficient luminescence and fast carrier transport, into a single polymer. Here we study the photophysics of a recently discovered class of conjugated polymers with high charge carrier mobility and low degree of energetic disorder and investigate whether it is possible in this system to achieve by molecular design a high photoluminescence quantum yield without sacrificing carrier mobility. Tracing exciton dynamics over femtosecond to microsecond time scales, we show that nearly all nonradiative exciton recombination arises from interactions between chromophores on different chains. We evaluate the temperature dependence and role of electron-phonon coupling leading to fast internal conversion in systems with strong interchain coupling and the extent to which this can be turned off by varying side chain substitution. By sterically decreasing interchain interaction, we present an effective approach to increase the fluorescence quantum yield of low-energy gap polymers. We present a red-NIR-emitting amorphous polymer with the highest reported film luminescence quantum efficiency of 18% whose mobility concurrently exceeds that of amorphous-Si. This is a key result toward the development of single-layer optoelectronic devices that require both properties.

15.
Invest Radiol ; 54(8): 453-463, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31265439

RESUMEN

OBJECTIVES: This preclinical study was devised to investigate potential cellular toxicity in human neurons induced by gadolinium-based contrast agents (GBCAs) used for contrast-enhanced magnetic resonance imaging (MRI). Neurons modeling a subset of those in the basal ganglia were tested, because the basal ganglia region is 1 of 2 brain regions that displays the greatest T1-dependent signal hyperintensity changes. METHODS: Eight GBCAs were tested. Dopaminergic neurons modeling a subset of those in the basal ganglia were differentiated from an established human neuroblastoma cell line and exposed to increasing concentrations of each agent for 7 days. The tested dosages ranged from clinically relevant concentrations measured in some autopsy patients who had received repeated injections of contrast for MRI, to higher concentrations to reveal dose-dependent toxicity trends. Cell death, mitochondrial membrane potential, mitochondrial oxidative capacity, and mitochondrial function measured by oxygen consumption were quantified in cells treated with each GBCA or the osmolality control mannitol and compared to untreated cells which served as a negative control. RESULTS: Mannitol caused no change from negative controls in any of the tests, at any concentration tested. For all GBCAs, cell death increased with exposure dose, with toxicity at clinically relevant doses for agents with lower kinetic stability. Reduction of mitochondrial membrane potential and oxidative respiratory function also generally mirrored the agents' structural kinetic stabilities, with greater impairment at lower concentration for the less stable agents. CONCLUSIONS: In human neurons modeling a subset of those in the basal ganglia, these results demonstrate a toxic effect of gadolinium-containing MRI contrast agents on mitochondrial respiratory function and cell viability. Toxicity increases as agent concentration increases and as the kinetic stability of the agent decreases.


Asunto(s)
Muerte Celular/fisiología , Medios de Contraste/farmacocinética , Gadolinio/farmacocinética , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Neuronas/patología , Femenino , Humanos , Masculino
16.
J Am Soc Nephrol ; 30(8): 1439-1453, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31311828

RESUMEN

BACKGROUND: New therapies blocking the IL-6 receptor (IL-6R) have recently become available and are successfully being used to treat inflammatory diseases like arthritis. Whether IL-6 blockers may help patients with kidney inflammation currently remains unknown. METHODS: To learn more about the complex role of CD4+ T cell-intrinsic IL-6R signaling, we induced nephrotoxic nephritis, a mouse model for crescentic GN, in mice lacking T cell-specific IL-6Ra. We used adoptive transfer experiments and studies in reporter mice to analyze immune responses and Treg subpopulations. RESULTS: Lack of IL-6Ra signaling in mouse CD4+ T cells impaired the generation of proinflammatory Th17 cells, but surprisingly did not ameliorate the course of GN. In contrast, renal damage was significantly reduced by restricting IL-6Ra deficiency to T effector cells and excluding Tregs. Detailed studies of Tregs revealed unaltered IL-10 production despite IL-6Ra deficiency. However, in vivo and in vitro, IL-6Ra classic signaling induced RORγt+Foxp3+ double-positive Tregs (biTregs), which carry the trafficking receptor CCR6 and have potent immunoregulatory properties. Indeed, lack of IL-6Ra significantly reduced Treg in vitro suppressive capacity. Finally, adoptive transfer of T cells containing IL-6Ra-/- Tregs resulted in severe aggravation of GN in mice. CONCLUSIONS: Our data refine the old paradigm, that IL-6 enhances Th17 responses and suppresses Tregs. We here provide evidence that T cell-intrinsic IL-6Ra classic signaling indeed induces the generation of Th17 cells but at the same time highly immunosuppressive RORγt+ biTregs. These results advocate caution and indicate that IL-6-directed therapies for GN need to be cell-type specific.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Subunidad alfa del Receptor de Interleucina-6/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores de Interleucina-6/metabolismo , Transducción de Señal , Linfocitos T Reguladores/inmunología , Animales , Línea Celular , Cruzamientos Genéticos , Femenino , Glomerulonefritis/metabolismo , Glomerulonefritis/patología , Inmunosupresores/uso terapéutico , Inflamación , Subunidad alfa del Receptor de Interleucina-6/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Necrosis , Receptores de Interleucina-6/genética , Células Th17/citología
17.
Nat Commun ; 10(1): 2614, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197152

RESUMEN

Efficient conjugated polymer optoelectronic devices benefit from concomitantly high luminescence and high charge carrier mobility. This is difficult to achieve, as interchain interactions, which are needed to ensure efficient charge transport, tend also to reduce radiative recombination and lead to solid-state quenching effects. Many studies detail strategies for reducing these interactions to increase luminescence, or modifying chain packing motifs to improve percolation charge transport; however achieving these properties together has proved elusive. Here, we show that properly designed amorphous donor-alt-acceptor conjugated polymers can circumvent this problem; combining a tuneable energy gap, fast radiative recombination rates and luminescence quantum efficiencies >15% with high carrier mobilities exceeding 2.4 cm2/Vs. We use photoluminescence from exciton states pinned to close-crossing points to study the interplay between mobility and luminescence. These materials show promise towards realising advanced optoelectronic devices based on conjugated polymers, including electrically-driven polymer lasers.

18.
Invest Radiol ; 54(7): 383-395, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30946182

RESUMEN

Recent innovations in magnetic resonance, involving both hardware and software, that effectively deal with motion-whether inadvertent on the part of the patient or due to respiration and cardiac contraction-are reviewed, emphasizing major current advances. New technology involving motion sensing (kinetic, respiratory, and beat) is enabling simpler, faster, and more robust monitoring of the sources of motion. This information is being integrated, with new innovative imaging approaches, to effectively manage motion and its impact on image quality. Additional impact has been made by the use of compressed sensing and simultaneous multislice imaging, with these techniques maturing and being adopted to decrease scan time and thus the effect of motion. Guidance in terms of clinical use for techniques that effectively combat motion is provided, focusing on enabling faster and improved clinical scans. Magnetic resonance imaging is on the cusp of a major new leap forward in terms of image quality and clinical utility enabled by these technological advances.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Corazón/fisiología , Humanos , Movimiento (Física) , Respiración
19.
Sci Adv ; 5(2): eaav2012, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30793032

RESUMEN

One source of instability in perovskite solar cells (PSCs) is interfacial defects, particularly those that exist between the perovskite and the hole transport layer (HTL). We demonstrate that thermally evaporated dopant-free tetracene (120 nm) on top of the perovskite layer, capped with a lithium-doped Spiro-OMeTAD layer (200 nm) and top gold electrode, offers an excellent hole-extracting stack with minimal interfacial defect levels. For a perovskite layer interfaced between these graded HTLs and a mesoporous TiO2 electron-extracting layer, its photoluminescence yield reaches 15% compared to 5% for the perovskite layer interfaced between TiO2 and Spiro-OMeTAD alone. For PSCs with graded HTL structure, we demonstrate efficiency of up to 21.6% and an extended power output of over 550 hours of continuous illumination at AM1.5G, retaining more than 90% of the initial performance and thus validating our approach. Our findings represent a breakthrough in the construction of stable PSCs with minimized nonradiative losses.

20.
J Am Chem Soc ; 140(43): 14097-14111, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30293427

RESUMEN

CdSe/CdTe core-crown type-II nanoplatelet heterostructures are two-dimensional semiconductors that have attracted interest for use in light-emitting technologies due to their ease of fabrication, outstanding emission yields, and tunable properties. Despite this, the exciton dynamics of these complex materials, and in particular how they are influenced by phonons, is not yet well understood. Here, we use a combination of femtosecond vibrational spectroscopy, temperature-resolved photoluminescence (PL), and temperature-dependent structural measurements to investigate CdSe/CdTe nanoplatelets with a thickness of four monolayers. We show that charge-transfer (CT) excitons across the CdSe/CdTe interface are formed on two distinct time scales: initially from an ultrafast (∼70 fs) electron transfer and then on longer time scales (∼5 ps) from the diffusion of domain excitons to the interface. We find that the CT excitons are influenced by an interfacial phonon mode at ∼120 cm-1, which localizes them to the interface. Using low-temperature PL spectroscopy we reveal that this same phonon mode is the dominant mechanism in broadening the CT PL. On cooling to 4 K, the total PL quantum yield reaches close to unity, with an ∼85% contribution from CT emission and the remainder from an emissive sub-band-gap state. At room temperature, incomplete diffusion of domain excitons to the interface and scattering between CT excitons and phonons limit the PL quantum yield to ∼50%. Our results provide a detailed picture of the nature of exciton-phonon interactions at the interfaces of 2D heterostructures and explain both the broad shape of the CT PL spectrum and the origin of PL quantum yield losses. Furthermore, they suggest that to maximize the PL quantum yield both improved engineering of the interfacial crystal structure and diffusion of domain excitons to the interface, e.g., by altering the relative core/crown size, are required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...