Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cogn Neurodyn ; 18(2): 557-579, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38699609

RESUMEN

Because cognitive competences emerge in evolution and development from the sensory-motor domain, we seek a neural process account for higher cognition in which all representations are necessarily grounded in perception and action. The challenge is to understand how hallmarks of higher cognition, productivity, systematicity, and compositionality, may emerge from such a bottom-up approach. To address this challenge, we present key ideas from Dynamic Field Theory which postulates that neural populations are organized by recurrent connectivity to create stable localist representations. Dynamic instabilities enable the autonomous generation of sequences of mental states. The capacity to apply neural circuitry across broad sets of inputs that emulates the function call postulated in symbolic computation emerges through coordinate transforms implemented in neural gain fields. We show how binding localist neural representations through a shared index dimension enables conceptual structure, in which the interdependence among components of a representation is flexibly expressed. We demonstrate these principles in a neural dynamic architecture that represents and perceptually grounds nested relational and action phrases. Sequences of neural processing steps are generated autonomously to attentionally select the referenced objects and events in a manner that is sensitive to their interdependencies. This solves the problem of 2 and the massive binding problem in expressions such as "the small tree that is to the left of the lake which is to the left of the large tree". We extend earlier work by incorporating new types of grammatical constructions and a larger vocabulary. We discuss the DFT framework relative to other neural process accounts of higher cognition and assess the scope and challenges of such neural theories.

2.
Blood ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657197

RESUMEN

Thrombotic microangiopathy (TMA) is characterized by immunothrombosis and life-threatening organ failure, but the precise underlying mechanism driving its pathogenesis remains elusive. In this study, we hypothesized that gasdermin D (GSDMD), a pore-forming protein serving as the final downstream effector of pyroptosis/interleukin (IL)-1pathway, contributes to TMA and its consequences by amplifying neutrophil maturation and subsequent necrosis. Using a murine model of focal crystalline TMA, we found that Gsdmd-deficiency ameliorated immunothrombosis, acute tissue injury and failure. Gsdmd-/- mice exhibited a decrease in mature IL-1, as well as in neutrophil maturation, 2 integrin activation, and recruitment to TMA lesions, where they formed reduced neutrophil extracellular traps both in arteries and interstitial tissue. The GSDMD inhibitor disulfiram dose-dependently suppressed human neutrophil pyroptosis in response to cholesterol crystals. Experiments with GSDMD-deficient human induced pluripotent stem cell-derived neutrophils confirmed the involvement of GSDMD in neutrophil 2 integrin activation, maturation as well as pyroptosis. Both prophylactic and therapeutic administration of disulfiram protected mice from focal TMA, acute tissue injury and failure. Our data identify GSDMD as a key mediator of focal crystalline TMA and its consequences: ischemic tissue infarction and organ failure. GSDMD could potentially serve as a therapeutic target for systemic forms of TMA.

3.
Cogn Sci ; 45(10): e13045, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34647339

RESUMEN

How does the human brain link relational concepts to perceptual experience? For example, a speaker may say "the cup to the left of the computer" to direct the listener's attention to one of two cups on a desk. We provide a neural dynamic account for both perceptual grounding, in which relational concepts enable the attentional selection of objects in the visual array, and for the generation of descriptions of the visual array using relational concepts. In the model, activation in neural populations evolves dynamically under the influence of both inputs and strong interaction as formalized in dynamic field theory. Relational concepts are modeled as patterns of connectivity to perceptual representations. These generalize across the visual array through active coordinate transforms that center the representation of target objects in potential reference objects. How the model perceptually grounds or generates relational descriptions is probed in 104 simulations that systematically vary the spatial and movement relations employed, the number of feature dimensions used, and the number of matching and nonmatching objects. We explain how sequences of decisions emerge from the time- and state-continuous neural dynamics, how relational hypotheses are generated and either accepted or rejected, followed by the selection of new objects or the generation of new relational hypotheses. Its neural realism distinguishes the model from information processing accounts, its capacity to autonomously generate sequences of processing steps distinguishes it from deep neural network accounts. The model points toward a neural dynamic theory of higher cognition.


Asunto(s)
Encéfalo , Cognición , Humanos , Movimiento
4.
Brain Behav Immun ; 92: 234-244, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33333168

RESUMEN

Neonatal encephalopathy following hypoxia-ischemia (HI) is a major cause of long-term morbidity and mortality in children. Even though HI-induced neuroinflammation, involving infiltration of peripheral immune cells into the CNS has been associated with disease pathogenesis, the specific role of neutrophils is highly debated. Due to immaturity of the neonatal immune system, it has been assumed that neutrophils are less clinically relevant in neonatal HI-induced brain injury. In the present study, we demonstrate that neutrophils are rapidly activated in the neonatal brain after exposure to experimental HI, revealed by an enhanced proportion of CD86+ cells and an increased expression of CD11b compared to splenic and blood neutrophils. Furthermore, production of reactive oxygen species and the proportion of hyperactivated/aged (CXCR4+CD62L-) cells was enhanced in brain compared to peripheral neutrophils. Delayed neutrophil depletion, initiated 12 h after HI resulted in reduced cellular neurodegeneration, associated with reduced micro- and astroglial activation. In the present study, we uncovered a new complex switch of the phenotype in brain neutrophils, which may offer new possibilities for the development of selective therapeutic approaches by modulation of neutrophils in the early post-hypoxic disease phase.


Asunto(s)
Hipoxia-Isquemia Encefálica , Neutrófilos , Anciano , Animales , Animales Recién Nacidos , Encéfalo , Niño , Humanos , Hipoxia , Recién Nacido , Isquemia
5.
Psychopharmacology (Berl) ; 238(4): 1047-1057, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33349900

RESUMEN

RATIONALE: Calcineurin is a protein regulating cytokine expression in T lymphocytes and calcineurin inhibitors such as cyclosporine A (CsA) are widely used for immunosuppressive therapy. It also plays a functional role in distinct neuronal processes in the central nervous system. Disturbed information processing as seen in neuropsychiatric disorders is reflected by deficient sensorimotor gating, assessed as prepulse inhibition (PPI) of the acoustic startle response (ASR). OBJECTIVE: Patients who require treatment with immunosuppressive drugs frequently display neuropsychiatric alterations during treatment with calcineurin inhibitors. Importantly, knockout of calcineurin in the forebrain of mice is associated with cognitive impairments and symptoms of schizophrenia-like psychosis as seen after treatment with stimulants. METHODS: The present study investigated in rats effects of systemic acute and subchronic administration of CsA on sensorimotor gating. Following a single injection with effective doses of CsA, adult healthy male Dark Agouti rats were tested for PPI. For subchronic treatment, rats were injected daily with the same doses of CsA for 1 week before PPI was assessed. Since calcineurin works as a modulator of the dopamine pathway, activity of the enzyme tyrosine hydroxylase was measured in the prefrontal cortex and striatum after accomplishment of the study. RESULTS: Acute and subchronic treatment with the calcineurin inhibitor CsA disrupted PPI at a dose of 20 mg/kg. Concomitantly, following acute CsA treatment, tyrosine hydroxylase activity was reduced in the prefrontal cortex, which suggests that dopamine synthesis was downregulated, potentially reflecting a stimulatory impact of CsA on this neurotransmitter system. CONCLUSIONS: The results support experimental and clinical evidence linking impaired calcineurin signaling in the central nervous system to the pathophysiology of neuropsychiatric symptoms. Moreover, these findings suggest that therapy with calcineurin inhibitors may be a risk factor for developing neurobehavioral alterations as observed after the abuse of psychomotor stimulant drugs.


Asunto(s)
Inhibidores de la Calcineurina/farmacología , Ciclosporina/farmacología , Inmunosupresores/farmacología , Filtrado Sensorial/efectos de los fármacos , Animales , Dopamina/biosíntesis , Masculino , Neostriado/enzimología , Corteza Prefrontal/enzimología , Ratas , Ratas Sprague-Dawley , Reflejo de Sobresalto/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
6.
Top Cogn Sci ; 9(1): 35-47, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28054458

RESUMEN

Describing actions entails that relations between objects are discovered. A pervasively neural account of this process requires that fundamental problems are solved: the neural pointer problem, the binding problem, and the problem of generating discrete processing steps from time-continuous neural processes. We present a prototypical solution to these problems in a neural dynamic model that comprises dynamic neural fields holding representations close to sensorimotor surfaces as well as dynamic neural nodes holding discrete, language-like representations. Making the connection between these two types of representations enables the model to describe actions as well as to perceptually ground movement phrases-all based on real visual input. We demonstrate how the dynamic neural processes autonomously generate the processing steps required to describe or ground object-oriented actions. By solving the fundamental problems of neural pointing, binding, and emergent discrete processing, the model may be a first but critical step toward a systematic neural processing account of higher cognition.


Asunto(s)
Cognición/fisiología , Humanos , Lenguaje , Modelos Neurológicos
7.
Front Neurorobot ; 10: 14, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27853431

RESUMEN

Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar, which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA