Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 129(1): 37-52, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34549262

RESUMEN

BACKGROUND AND AIMS: ATP-dependent phosphofructokinases (PFKs) catalyse phosphorylation of the carbon-1 position of fructose-6-phosphate, to form fructose-1,6-bisphosphate. In the cytosol, this is considered a key step in channelling carbon into glycolysis. Arabidopsis thaliana has seven genes encoding PFK isoforms, two chloroplastic and five cytosolic. This study focuses on the four major cytosolic isoforms of PFK in vegetative tissues of A. thaliana. METHODS: We isolated homozygous knockout individual mutants (pfk1, pfk3, pfk6 and pfk7) and two double mutants (pfk1/7 and pfk3/6), and characterized their growth and metabolic phenotypes. KEY RESULTS: In contrast to single mutants and the double mutant pfk3/6 for the hypoxia-responsive isoforms, the double mutant pfk1/7 had reduced PFK activity and showed a clear visual and metabolic phenotype with reduced shoot growth, early flowering and elevated hexose levels. This mutant also has an altered ratio of short/long aliphatic glucosinolates and an altered root-shoot distribution. Surprisingly, this mutant does not show any major changes in short-term carbon flux and in levels of hexose-phosphates. CONCLUSIONS: We conclude that the two isoforms PFK1 and PFK7 are important for sugar homeostasis in leaf metabolism and apparently in source-sink relationships in A. thaliana, while PFK3 and PFK6 only play a minor role under normal growth conditions.


Asunto(s)
Arabidopsis , Fosfofructoquinasas , Hojas de la Planta/enzimología , Azúcares , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosol/enzimología , Homeostasis , Fosfofructoquinasas/genética , Fosfofructoquinasas/metabolismo , Azúcares/metabolismo
2.
Antioxidants (Basel) ; 10(3)2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33800095

RESUMEN

The chloroplast primary metabolism is of central importance for plant growth and performance. Therefore, it is tightly regulated in order to adequately respond to multiple environmental conditions. A major fluctuation that plants experience each day is the change between day and night, i.e., the change between assimilation and dissimilation. Among other mechanisms, thioredoxin-mediated redox regulation is an important component of the regulation of plastid-localized metabolic enzymes. While assimilatory processes such as the Calvin-Benson cycle are activated under illumination, i.e., under reducing conditions, carbohydrate degradation is switched off during the day. Previous analyses have identified enzymes of the oxidative pentose phosphate pathway to be inactivated by reduction through thioredoxins. In this work, we present evidence that an enzyme of the plastidic glycolysis, the phosphofructokinase isoform AtPFK5, is also inactivated through reduction by thioredoxins, namely by thioredoxin-f. With the help of chemical oxidation, mutant analyses and further experiments, the highly conserved motif CXDXXC in AtPFK5 was identified as the target sequence for this regulatory mechanism. However, knocking out this isoform in plants had only very mild effects on plant growth and performance, indicating that the complex primary metabolism in plants can overcome a lack in AtPFK5 activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA