Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 175: 239-245, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28043067

RESUMEN

Surface-enhanced Raman scattering (SERS) and fluorescence microscopy are a widely used biological and chemical characterization techniques. However, the peak overlapping in multiplexed experiments and rapid photobleaching of fluorescent organic dyes is still the limitations. When compared to Ag nanocubes (NCs), higher SERS sensitivities can be obtained with thin shelled silica Ag@SiO2 NCs, in contrast metal-enhanced photoluminescence (MEPL) is only found with NCs that have thicker silica shells. A 'dual functionality' represented by the simultaneous strengthening of SERS and MEPL signals can be achieved by mixing Ag@SiO2 NCs, with a silica shell thickness of ~1.5nm and ~4.4nm. This approach allows both the Ag@SiO2 NCs SERS and MEPL sensitivities to be maintained at ~90% after 12weeks of storage. Based on the distinguished detection of creatinine and flavin adenine dinucleotide in the mixture, the integration of SERS and MEPL together on a stable single plasmonic nanoparticle platform offers an opportunity to enhance both biomarker detection sensitivity and specificity.


Asunto(s)
Creatinina/análisis , Flavina-Adenina Dinucleótido/análisis , Mediciones Luminiscentes , Nanopartículas del Metal/química , Dióxido de Silicio/química , Plata/química , Espectrometría Raman , Nanopartículas del Metal/ultraestructura , Espectrometría por Rayos X , Coloración y Etiquetado , Difracción de Rayos X
3.
Nanoscale Horiz ; 1(4): 243-267, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32260645

RESUMEN

Photoelectrochemical (PEC) water splitting is a promising technology for solar hydrogen production to build a sustainable, renewable and clean energy economy. Hematite (α-Fe2O3) based photoanodes offer promise for such applications, due to their high chemical stability, great abundance and low cost. Despite these promising properties, progress towards the manufacture of practical water splitting devices has been limited. This review is intended to highlight recent advancements and the limitations that still hamper the full utilization of hematite electrodes in PEC water splitting systems. We review recent progress in manipulating hematite for PEC water splitting through various approaches, focused on e.g. enhancing light absorption, water oxidation kinetics, and charge carrier collection efficiency. As the morphology affects various properties, progress in morphological characterization from thicker planar films to recent ultrathin nanophotonic morphologies is also examined. Special emphasis has been given to various ultrathin films and nanophotonic structures which have not been given much attention in previous review articles.

4.
Sci Rep ; 5: 16263, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26541371

RESUMEN

Splitting water for hydrogen production using light, or electrical energy, is the most developed 'green technique'. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of -20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of -0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production.

5.
ACS Appl Mater Interfaces ; 7(25): 13801-7, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25989244

RESUMEN

A substantial increase in charging capacity over long cycle periods was made possible by the formation of a flexible weblike network via the combination of Al2O3 atomic layer deposition (ALD) and the electrolyte additive vinylene carbonate (VC). Transmission electron microscopy shows that a weblike network forms after cycling when ALD and VC were used in combination that dramatically increases the cycle stability for the Si composite anode. The ALD-VC combination also showed reduced reactions with the lithium salt, forming a more stable solid electrolyte interface (SEI) absent of fluorinated silicon species, as evidenced by X-ray photoelectron spectroscopy. Although the bare Si composite anode showed only an improvement from a 56% to a 45% loss after 50 cycles, when VC was introduced, the ALD-coated Si anode showed an improvement from a 73% to a 11% capacity loss. Furthermore, the anode with the ALD coating and VC had a capacity of 630 mAh g(-1) after 200 cycles running at 200 mA g(-1), and the bare anode without VC showed a capacity of 400 mAh g(-1) after only 50 cycles. This approach can be extended to other Si systems, and the formation of this SEI is dependent on the thickness of the ALD that affects both capacity and stability.

6.
Phys Chem Chem Phys ; 17(33): 21226-35, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25611788

RESUMEN

SiO2 coated silver nanocubes Ag@SiO2 with enhanced surface-enhanced Raman scattering (SERS) and metal enhanced photoluminescence (MEPL) sensitivity were synthesized and characterized. The silver nanocubes (NCs) were synthesized by the polyol method and modified, first with different coupling agents, such as 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APS), and secondly with tetraethylorthosilicate (TEOS) to improve their SERS and photoluminescence (PL) performances. The SERS and PL intensity of rhodamine 6G (R6G) can be manipulated by tuning the Ag nanocube's SiO2 shell thickness. Modified Ag NCs (with a 2 nm silica layer) were prepared using 1 mM APS and 1 mM TEOS and found to have a SERS intensity 3 fold higher than bare Ag NCs. Additionally, it was found that APS modified Ag@SiO2 NCs possessed both enhanced SERS and PL intensities.


Asunto(s)
Nanoestructuras/química , Dióxido de Silicio/química , Plata/química , Espectrometría Raman , Compuestos de Organosilicio , Propilaminas/química , Rodaminas/química , Silanos/química
7.
Nanomaterials (Basel) ; 6(1)2015 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28344262

RESUMEN

This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs), which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today's society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given.

8.
ACS Nano ; 8(3): 2704-13, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24533852

RESUMEN

The properties of confined liquid water, or liquid water in contact with hydrophobic surfaces, are significantly different from those of bulk liquid water. However, all of water's commonly described properties are related to inert "bulk liquid water" which comprises a tetrahedral hydrogen-bonded network. In this work, we report an innovative and facile method for preparing small water clusters (SWCs) with reduced affinity hydrogen bonds by letting bulk water flow through supported Au nanoparticles (NPs) under resonant illumination to give NP-treated (AuNT) water at constant temperature. Utilizing localized surface plasmon resonance on illuminated Au NPs, the strong hydrogen bonds of bulk water can be disordered when water is located at the illuminated Au/water interface. The prepared SWCs are free of Au NPs. The energy efficiency for creating SWCs is ∼17%. The resulting stable AuNT water exhibits distinct properties at room temperature, which are significantly different from the properties of untreated bulk water, examples being their ability to scavenge free hydroxyl and 2,2-diphenyl-1-picrylhydrazyl radicals and to effectively reduce NO release from lipopolysaccharide-induced inflammatory cells.

9.
J Am Chem Soc ; 136(3): 999-1007, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24364760

RESUMEN

High-capacity layered, lithium-rich oxide cathodes show great promise for use as positive electrode materials for rechargeable lithium ion batteries. Understanding the effects of oxygen activating reactions on the cathode's surface during electrochemical cycling can lead to improvements in stability and performance. We used in situ surfaced-enhanced Raman spectroscopy (SERS) to observe the oxygen-related surface reactions that occur during electrochemical cycling on lithium-rich cathodes. Here, we demonstrate the direct observation of Li2O formation during the extended plateau and discuss the consequences of its formation on the cathode and anode. The formation of Li2O on the cathode leads to the formation of species related to the generation of H2O together with LiOH and to changes within the electrolyte, which eventually result in diminished performance. Protection from, or mitigation of, such devastating surface reactions on both electrodes will be necessary to help realize the potential of high-capacity cathode materials (270 mAhg(-1) versus 140 mAhg(-1) for LiCoO2) for practical applications.

10.
ChemSusChem ; 7(2): 570-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24307476

RESUMEN

Copper/nickel nanocatalysts with a unique morphology were prepared by thermal reduction of a perovskite LaNix Cu1-x O3 precursor (x=1, 0.9, and 0.7). During thermal reduction, copper was first reduced and reacted with lanthanum to form metastable Cu5 La and Cu13 La. When the thermal reduction temperature was increased, the perovskite decomposed to Ni and La2 O3 , CuLa alloys disappeared, and Cu deposits on Ni nanoparticles were generated, thereby forming Cu/Ni nanocatalysts with hierarchical structures. Nanosized nickel, decorated with copper and supported on La2 O3 , could be produced at 520-550 °C. The steam reforming of ethanol was used as a model reaction to demonstrate the catalytic capability of the materials formed. The hierarchical structure of the Cu/Ni/La2 O3 catalysts confers synergetic effects that greatly favor the dehydrogenation of ethanol and which break the C-C bond to produce a higher yield of hydrogen at a low reaction temperature, whereas La2 O3 provides the required stability during the reaction. The reaction at 290 °C achieved almost 100 % conversion with a hydrogen yield reaching 2.21 molH2 mol(-1) EtOH thus indicating that this special structural feature can achieve high activity for the SRE at low temperatures. The proposed synthesis of nanocatalysts appears to be a good way to generate oxide-supported hierarchically structured nanoparticles that can also be applied to other reactions catalyzed by a heterogeneous metal oxide system.


Asunto(s)
Cobre/química , Etanol/química , Lantano/química , Nanopartículas del Metal/química , Níquel/química , Óxidos/química , Vapor , Temperatura
11.
J Mater Chem B ; 2(6): 629-636, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32261280

RESUMEN

A highly sensitive self-focusing surface-enhanced Raman scattering (SERS) methodology has been developed using Au@SiO2 core-shell nanorods for carcinoembryonic antigen (CEA) detection. The SERS enhancement factor was evaluated for anisotropic Au@SiO2 nanorods with silica shells of various thicknesses, upon which Rhodamine 6G (R6G) dye was applied as a reporter molecule for the quantitative determination of CEA. The highest R6G signal was attained with a silica layer of 1-2 nm thickness. The self-focusing character originates from the antibody-antigen interaction, which facilitates the SERS probes assembly and significantly increases the detection sensitivity of the CEA. Our results show that the SERS technique is able to detect CEA within a wide concentration range. With an extremely low limit of detection (LOD) of 0.86 fg mL-1, the Au@SiO2 nanoprobes potentially enable the early diagnosis of cancer. Our work offers a low-cost route to the fabrication of sensing devices able to be used for monitoring cancer progression in natural matrices, such as blood.

12.
J Mater Chem B ; 2(34): 5550-5557, 2014 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32262188

RESUMEN

Trimetallic nanostructures have received considerable attention in recent years, due to their widespread use in photonics, catalysis, and surface-enhanced Raman scattering (SERS) detection. Nanoparticles consisting of multiple (n≥ 3) noble metal components, synthesized under controlled conditions, show better SERS-active stability than mono- or bimetallic nanoparticles. In this work, a simple and novel protocol was used for the synthesis of hollow or porous Ag/Au/Pt trimetallic nanocages, based on a galvanic replacement reaction and co-reduction of the corresponding ions. The nanocages were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction. It was also demonstrated that the Ag/Au/Pt trimetallic nanocages were both extremely SERS-active and stable. Our results show that Rhodamine 3B, used as a fluorescent marker, could be detected over a wide concentration range from 10-15 to 10-8 M, with the lower limit of detection being 10-15 M.

13.
Biosensors (Basel) ; 4(4): 461-471, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25587434

RESUMEN

Bimetallic nanostructured core-shell structures are commonly used as catalysts in a wide variety of reactions. We surmised that the addition of an additional metal would potentially allow catalytic tailoring with the possibility of an increase in activity. Here a tri-metallic catalytic structure, consisting of clustered catalytic Pt on the surface of a Pd shell supported on a rod shaped Au core was fabricated. The significance of the additional metallic component is shown by comparative electrochemically active surface area (ECSA) analysis results for the trimetallic Aurod-Pdshell-Ptcluster, bimetallic Aurod-Ptcluster and monometallic JM-Pt (used as a reference), which have respective ECSA values (cm(2)/mgPt) of 1883.0, 1371.7 and 879. The potential utility of the trimetallic catalysts was shown in a hydrogen peroxide sensing protocol, which showed the catalyst to have a sensitivity of 604 ìA/mMcm(2) within a linear range of 0.0013-6.191 mM.

15.
J Mater Chem B ; 1(43): 5925-5932, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-32261059

RESUMEN

A bimetallic amperometric sensor comprising a dendritic Pt shell formed on rod-shaped Au cores (Aurod@Pt) for the rapid estimation of glucose by direct electro-oxidation under physiological conditions is reported. The materials were characterized by XRD, TEM, UV-vis, and cyclic voltammetry. The sensor was constructed by immobilizing Aurod@Pt bimetallic nanoparticles, in a Nafion film, on a glassy carbon electrode (Nafion/Aurod@Pt/GCE). The results showed that Aurod@Pt nanoparticles provided significantly higher sensitivity compared to dendritic Pt. X-ray absorption spectroscopy and X-ray photoelectron spectroscopy suggested that electron transfer, from the Au core to dendritic Pt, resulted in significant enhancement of electrocatalytic activity, due to reduction in Pt absorption of glucose oxidation intermediates and Cl- ions. In addition, Nafion/Aurod@Pt/GCE was found to exhibit a low working potential, fast amperometric response, high sensitivity, good reproducibility, good long term stability, and a high specificity to glucose with negligible interference from uric acid, ascorbic acid, acetamidophenol, or chloride ions.

16.
Chemistry ; 19(3): 905-15, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23197430

RESUMEN

A controlled composition-based method--that is, the microwave-assisted ethylene glycol (MEG) method--was successfully developed to prepare bimetallic Pt(x)Ru(100-x)/C nanoparticles (NPs) with different alloy compositions. This study highlights the impact of the variation in alloy composition of Pt(x)Ru(100-x)/C NPs on their alloying extent (structure) and subsequently their catalytic activity towards the methanol oxidation reaction (MOR). The alloying extent of these Pt(x)Ru(100-x)/C NPs has a strong influence on their Pt d-band vacancy and Pt electroactive surface area (Pt ECSA); this relationship was systematically evaluated by using X-ray absorption (XAS), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), density functional theory (DFT) calculations, and electrochemical analyses. The MOR activity depends on two effects that act in cooperation, namely, the number of active Pt sites and their activity. Here the number of active Pt sites is associated with the Pt ECSA value, whereas the Pt-site activity is associated with the alloying extent and Pt d-band vacancy (electronic) effects. Among the Pt(x)Ru(100-x)/C NPs with various Pt:Ru atomic ratios (x = 25, 50, and 75), the Pt(75)Ru(25)/C NPs were shown to be superior in MOR activity on account of their favorable alloying extent, Pt d-band vacancy, and Pt ECSA. This short study brings new insight into probing the synergistic effect on the surface reactivity of the Pt(x)Ru(100-x)/C NPs, and possibly other bimetallic Pt-based alloy NPs.


Asunto(s)
Carbono/química , Metanol/química , Nanopartículas/química , Platino (Metal)/química , Rutenio/química , Catálisis , Técnicas Electroquímicas , Estructura Molecular , Oxidación-Reducción , Tamaño de la Partícula , Teoría Cuántica , Propiedades de Superficie
17.
Biosens Bioelectron ; 33(1): 75-81, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22277115

RESUMEN

A sensitive, selective and stable amperometric glucose biosensor employing novel PtPd bimetallic nanoparticles decorated on multi-walled carbon nanotubes (PtPd-MWCNTs) was investigated. PtPd-MWCNTs were prepared by a modified Watanabe method, and characterized by XRD and TEM. The biosensor was constructed by immobilizing the PtPd-MWCNTs catalysts in a Nafion film on a glassy carbon electrode. An inner Nafion film coating was used to eliminate common interferents such as uric acid, ascorbic acid and fructose. Finally, a highly porous surface with an orderly three-dimensional network enzyme layer (CS-GA-GOx) was fabricated by electrodeposition. The resulting biosensor exhibited a good response to glucose with a wide linear range (0.062-14.07 mM) and a low detection limit 0.031 mM. The biosensor also showed a short response time (within 5 s), and a high sensitivity (112 µA mM(-1)cm(-2)). The Michaelis-Menten constant (K(m)) was determined as 3.3 mM. In addition, the biosensor exhibited high reproducibility, good storage stability and satisfactory anti-interference ability. The applicability of the biosensor to actual serum sample analysis was also evaluated.


Asunto(s)
Técnicas Biosensibles/métodos , Glucemia/análisis , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Nanotubos de Carbono/química , Catálisis , Electrodos , Humanos , Paladio/química , Platino (Metal)/química , Reproducibilidad de los Resultados
18.
Biosens Bioelectron ; 33(1): 120-7, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22236778

RESUMEN

A new highly catalytic and intensely sensitive amperometric sensor based on PtM (where M=Pd, Ir) bimetallic nanoparticles (NPs) for the rapid and accurate estimation of hydrogen peroxide (H(2)O(2)) by electrooxidation in physiological conditions is reported. PtPd and PtIr NPs-decorated multiwalled carbon nanotube nanocatalysts (PtM/MWCNTs) were prepared by a modified Watanabe method, and were characterized by XRD, TEM, ICP, and XAS. The sensors were constructed by immobilizing PtM/MWCNTs nanocatalysts in a Nafion film on a glassy carbon electrode. Both PtPd/MWCNTs and PtIr/MWCNTs assemblies catalyzed the electrochemical oxidation of H(2)O(2). Cyclic voltammetry characterization measurements revealed that both the PtM (M=Pd, Ir)/MWCNTs/GCE possessed similar electrochemical surface areas (∼0.55 cm(2)), and electron transfer rate constants (∼1.23 × 10(-3)cms(-1)); however, the PtPd sensor showed a better performance in H(2)O(2) sensing than did the PtIr counterpart. Explanations were sought from XAS measurements to explain the reasons for differences in sensor activity. When applied to the electrochemical detection of H(2)O(2), the PtPd/MWCNTs/GC electrode exhibited a low detection limit of 1.2 µM with a wide linear range of 2.5-125 µM (R(2)=0.9996). A low working potential (0V (SCE)), fast amperometric response (<5s), and high sensitivity (414.8 µA mM(-1)cm(-2)) were achieved at the PtPd/MWCNTs/GC electrode. In addition, the PtPd/MWCNTs nanocatalyst sensor electrode also exhibited excellent reproducibility and stability. Along with these attractive features, the sensor electrode also displayed very high specificity to H(2)O(2) with complete elimination of interference from UA, AA, AAP and glucose.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Peróxido de Hidrógeno/análisis , Nanopartículas del Metal/química , Nanotubos de Carbono/química , Reproducibilidad de los Resultados
19.
ACS Nano ; 5(12): 9370-81, 2011 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-22047129

RESUMEN

Although bimetallic core@shell structured nanoparticles (NPs) are achieving prominence due to their multifunctionalities and exceptional catalytic, magnetic, thermal, and optical properties, the rationale underlying their design remains unclear. Here we report a kinetically controlled autocatalytic chemical process, adaptable for use as a general protocol for the fabrication of bimetallic core@shell structured NPs, in which a sacrificial Cu ultrathin layer is autocatalytically deposited on a dimensionally stable noble-metal core under kinetically controlled conditions, which is then displaced to form an active ultrathin metal-layered shell by redox-transmetalation. Unlike thermodynamically controlled under-potential deposition processes, this general strategy allows for the scaling-up of production of high-quality core-shell structured NPs, without the need for any additional reducing agents and/or electrochemical treatments, some examples being Pd@Pt, Pt@Pd, Ir@Pt, and Ir@Pd. Having immediate and obvious commercial potential, Pd@Pt NPs have been systematically characterized by in situ X-ray absorption, electrochemical-FTIR, transmission electron microscopy, and electrochemical techniques, both during synthesis and subsequently during testing in one particularly important catalytic reaction, namely, the oxygen reduction reaction, which is pivotal in fuel cell operation. It was found that the bimetallic Pd@Pt NPs exhibited a significantly enhanced electrocatalytic activity, with respect to this reaction, in comparison with their monometallic counterparts.


Asunto(s)
Galvanoplastia/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Paladio/química , Platino (Metal)/química , Catálisis , Cristalización/métodos , Cinética , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
20.
Chem Commun (Camb) ; 47(38): 10656-8, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21881643

RESUMEN

An alkyne-bearing polyhedral oligomeric silsesquioxane (POSS) core was used to prepare POSS-containing polymer hybrids using 'grafting to' or 'grafting from' strategies in combination with reversible chain transfer and click chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA